The control of shoot branching: an example of plant information processing

被引:200
作者
Leyser, Ottoline [1 ]
机构
[1] Univ York, Dept Biol, Area 11, York YO10 5YW, N Yorkshire, England
基金
英国生物技术与生命科学研究理事会;
关键词
auxin; auxin transport; axillary bud; cytokinin; dormancy; strigolactone; TCP; AXILLARY BUD OUTGROWTH; APICAL-DOMINANCE; AUXIN TRANSPORT; CYTOKININ BIOSYNTHESIS; FEEDBACK-REGULATION; MUTATIONAL ANALYSIS; SHADE-AVOIDANCE; GENE-EXPRESSION; CIS-ELEMENTS; ROOT-GROWTH;
D O I
10.1111/j.1365-3040.2009.01930.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Throughout their life cycle, plants adjust their body plan to suit the environmental conditions in which they are growing. A good example of this is in the regulation of shoot branching. Axillary meristems laid down in each leaf formed from the primary shoot apical meristem can remain dormant, or activate to produce a branch. The decision whether to activate an axillary meristem involves the assessment of a wide range of external environmental, internal physiological and developmental factors. Much of this information is conveyed to the axillary meristem via a network of interacting hormonal signals that can integrate inputs from diverse sources, combining multiple local signals to generate a rich source of systemically transmitted information. Local interpretation of the information provides another layer of control, ensuring that appropriate decisions are made. Rapid progress in molecular biology is uncovering the component parts of this signalling network, and combining this with physiological studies and mathematical modelling will allow the operation of the system to be better understood.
引用
收藏
页码:694 / 703
页数:10
相关论文
共 81 条
[1]   Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds [J].
Aguilar-Martinez, Jose Antonio ;
Poza-Carrion, Cesar ;
Cubas, Pilar .
PLANT CELL, 2007, 19 (02) :458-472
[2]   Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi [J].
Akiyama, K ;
Matsuzaki, K ;
Hayashi, H .
NATURE, 2005, 435 (7043) :824-827
[3]   Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction [J].
Alder, Adrian ;
Holdermann, Iris ;
Beyer, Peter ;
Al-Babili, Salim .
BIOCHEMICAL JOURNAL, 2008, 416 :289-296
[4]   DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice [J].
Arite, Tomotsugu ;
Iwata, Hirotaka ;
Ohshima, Kenji ;
Maekawa, Masahiko ;
Nakajima, Masatoshi ;
Kojima, Mikiko ;
Sakakibara, Hitoshi ;
Kyozuka, Junko .
PLANT JOURNAL, 2007, 51 (06) :1019-1029
[5]   Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family [J].
Auldridge, ME ;
Block, A ;
Vogel, JT ;
Dabney-Smith, C ;
Mila, I ;
Bouzayen, M ;
Magallanes-Lundback, M ;
DellaPenna, D ;
McCarty, DR ;
Klee, HJ .
PLANT JOURNAL, 2006, 45 (06) :982-993
[6]   Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene [J].
Bainbridge, K ;
Sorefan, K ;
Ward, S ;
Leyser, O .
PLANT JOURNAL, 2005, 44 (04) :569-580
[7]  
BANGERTH F, 1994, PLANTA, V194, P439, DOI 10.1007/BF00197546
[8]   The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport [J].
Bennett, T ;
Sieberer, T ;
Willett, B ;
Booker, J ;
Luschnig, C ;
Leyser, O .
CURRENT BIOLOGY, 2006, 16 (06) :553-563
[9]   The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s) [J].
Beveridge, CA ;
Symons, GM ;
Murfet, IC ;
Ross, JJ ;
Rameau, C .
PLANT PHYSIOLOGY, 1997, 115 (03) :1251-1258
[10]   Branching in pea - Action of genes rms3 and rms4 [J].
Beveridge, CA ;
Ross, JJ ;
Murfet, IC .
PLANT PHYSIOLOGY, 1996, 110 (03) :859-865