Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ concentration

被引:101
作者
Moreau, Ben [1 ]
Nelson, Charmaine [1 ]
Parekh, Anant B. [1 ]
机构
[1] Univ Oxford, Dept Physiol Anat & Genet, Oxford OX1 3PT, England
基金
英国医学研究理事会;
关键词
D O I
10.1016/j.cub.2006.06.059
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A rise in cytosolic Ca2+ concentration is used as a key activation signal in virtually all animal cells, where it triggers a range of responses including neurotransmitter release, muscle contraction, and cell growth and proliferation [1]. During intracellular Ca2+ signaling, mitochondria rapidly take up significant amounts of Ca2+ from the cytosol, and this stimulates energy production, alters the spatial and temporal profile of the intracellular Ca2+ signal, and triggers cell death [2-10]. Mitochondrial Ca2+ uptake occurs via a ruthenium-red-sensitive uniporter channel found in the inner membrane [11]. In spite of its critical importance, little is known about how the uniporter is regulated. Here, we report that the mitochondrial Ca2+ uniporter is gated by cytosolic Ca2+. Ca2+ uptake into mitochondria is a Ca2+-activated process with a requirement for functional calmodulin. However, cytosolic Ca2+ subsequently inactivates the uniporter, preventing further Ca2+ uptake. The uptake pathway and the inactivation process have relatively low Ca2+ affinities of approximately 10-20 mu M. However, numerous mitochondria are within 20-100 nm of the endoplasmic reticulum, thereby enabling rapid and efficient transmission of Ca2+ release into adjacent mitochondria by InsP(3) receptors on the endoplasmic reticulum. Hence, biphasic control of mitochondrial Ca2+ uptake by Ca2+ signaling.
引用
收藏
页码:1672 / 1677
页数:6
相关论文
共 25 条
[1]   Mitochondrial oversight of cellular Ca2+ signaling [J].
Babcock, DF ;
Hille, B .
CURRENT OPINION IN NEUROBIOLOGY, 1998, 8 (03) :398-404
[2]   Calcium signalling: Dynamics, homeostasis and remodelling [J].
Berridge, MJ ;
Bootman, MD ;
Roderick, HL .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (07) :517-529
[3]   BELL-SHAPED CALCIUM-RESPONSE CURVES OF INS(1,4,5)P3-GATED AND CALCIUM-GATED CHANNELS FROM ENDOPLASMIC-RETICULUM OF CEREBELLUM [J].
BEZPROZVANNY, I ;
WATRAS, J ;
EHRLICH, BE .
NATURE, 1991, 351 (6329) :751-754
[4]   Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes [J].
Boitier, E ;
Rea, R ;
Duchen, MR .
JOURNAL OF CELL BIOLOGY, 1999, 145 (04) :795-808
[5]   Mitochondrial Ca2+ uptake depends on the spatial and temporal profile of cytosolic Ca2+ signals [J].
Collins, TJ ;
Lipp, P ;
Berridge, MJ ;
Bootman, MD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (28) :26411-26420
[6]   Plasticity of mitochondrial calcium signaling [J].
Csordás, G ;
Hajnóczky, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (43) :42273-42282
[7]   Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death [J].
Duchen, MR .
JOURNAL OF PHYSIOLOGY-LONDON, 1999, 516 (01) :1-17
[8]   Mitochondria and Ca2+ in cell physiology and pathophysiology [J].
Duchen, MR .
CELL CALCIUM, 2000, 28 (5-6) :339-348
[9]   Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria [J].
Filippin, L ;
Magalhaes, PJ ;
Di Benedetto, G ;
Colella, M ;
Pozzan, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (40) :39224-39234
[10]   CALCIUM AS A COAGONIST OF INOSITOL 1,4,5-TRISPHOSPHATE INDUCED CALCIUM RELEASE [J].
FINCH, EA ;
TURNER, TJ ;
GOLDIN, SM .
SCIENCE, 1991, 252 (5004) :443-446