Monopoles and solitons in fuzzy physics

被引:113
作者
Baez, S [1 ]
Balachandran, AP
Vaidya, S
Ydri, B
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Tata Inst Fundamental Res, Colaba 400005, Mumbai, India
关键词
D O I
10.1007/s002200050011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Monopoles and solitons have important topological aspects like quantized fluxes, winding numbers and curved target spaces. Naive discretizations which substitute a lattice of points for the underlying manifolds are incapable of retaining these features in a precise way. We study these problems of discrete physics and matrix models and discuss mathematically coherent discretizations of monopolies and solitons using fuzzy physics and noncommutative geometry. A fuzzy sigma-model action for the two-sphere fulfilling a fuzzy Belavin-Polyakov bound is also put forth.
引用
收藏
页码:787 / 798
页数:12
相关论文
共 20 条
[1]  
Balachandran A.P., UNPUB
[2]  
BALACHANDRAN AP, HEPTH9910129
[3]  
BALACHANDRAN AP, 1991, CLASSICAL TOPOLOGY Q, P112
[4]  
BELAVIN AA, 1975, JETP LETT+, V22, P245
[5]   Chirality and dirac operator on noncommutative sphere [J].
CarowWatamura, U ;
Watamura, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (02) :365-382
[6]  
CAROWWATAMURA U, HEPTH9801195
[7]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[8]  
Coquereaux R., 1989, Journal of Geometry and Physics, V6, P425, DOI 10.1016/0393-0440(89)90013-2
[9]  
FROHLICH J, MATHPHYS9807006
[10]   Topologically nontrivial field configurations in noncommutative geometry [J].
Grosse, H ;
Klimcik, C ;
Presnajder, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (02) :507-526