Thermal fracture as a framework for quasi-static crack propagation

被引:43
作者
Corson, F. [1 ]
Adda-Bedia, M. [1 ]
Henry, H. [2 ]
Katzav, E. [1 ]
机构
[1] CNRS, Lab Phys Stat, ENS, F-75005 Paris, France
[2] Ecole Polytech, Phys Mat Condensee Lab, CNRS, UMR7643, F-91128 Palaiseau, France
关键词
Thermal crack; Principle of local symmetry; Phase field model; Crack path prediction; ELLIPTIC FUNCTIONALS; PLANE SITUATIONS; STRESS-FIELD; GLASS; INSTABILITIES; APPROXIMATION; PATTERNS; TRANSITION; EXPANSION; DYNAMICS;
D O I
10.1007/s10704-009-9361-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We address analytically and numerically the problem of crack path prediction in the model system of a crack propagating under thermal loading. We show that one can explain the instability from a straight to a wavy crack propagation by using only the principle of local symmetry and the Griffith criterion. We then argue that the calculations of the stress intensity factors can be combined with the standard crack propagation criteria to obtain the evolution equation for the crack tip within any loading configuration. The theoretical results of the thermal crack problem agree with the numerical simulations we performed using a phase field model. Moreover, it turns out that the phase-field model allows to clarify the nature of the transition between straight and oscillatory cracks which is shown to be supercritical.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 56 条
[21]   Fracture in mode I using a conserved phase-field model [J].
Eastgate, LO ;
Sethna, JP ;
Rauscher, M ;
Cretegny, T ;
Chen, CS ;
Myers, CR .
PHYSICAL REVIEW E, 2002, 65 (03) :1-036117
[22]  
Erdogan F., 1963, J BASIC ENG, V85, P519, DOI [10.1115/1.3656897, DOI 10.1115/1.3656897, https://doi.org/10.1115/1.3656897]
[23]   Generalized boundary conditions for periodic lattice systems: Application to the two-dimensional Ising model on a square lattice [J].
Etxebarria, I. ;
Elcoro, L. ;
Perez-Mato, J.M. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (6 2) :1-066133
[24]   Instability in dynamic fracture [J].
Fineberg, J ;
Marder, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 313 (1-2) :1-108
[25]   Viscous fingering in liquid crystals:: Anisotropy and morphological transitions [J].
Folch, R ;
Casademunt, J ;
Hernández-Machado, A .
PHYSICAL REVIEW E, 2000, 61 (06) :6632-6638
[26]  
Freund LB, 1990, Dynamic fracture mechanics
[27]   Crack street: The cycloidal wake of a cylinder tearing through a thin sheet [J].
Ghatak, A ;
Mahadevan, L .
PHYSICAL REVIEW LETTERS, 2003, 91 (21)
[28]   BRITTLE-FRACTURE OF SOLIDS WITH ARBITRARY CRACKS [J].
GOLDSTEIN, RV ;
SALGANIK, RL .
INTERNATIONAL JOURNAL OF FRACTURE, 1974, 10 (04) :507-523
[29]  
Griffith AA., 1921, Philos. Trans. R. Soc. A, V221, P163, DOI [10.1098/rsta.1921.0006, DOI 10.1098/RSTA.1921.0006]
[30]   Crack path prediction in anisotropic brittle materials [J].
Hakim, V ;
Karma, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (23)