Extended MHD simulation of resonant magnetic perturbations

被引:43
作者
Strauss, H. R. [1 ]
Sugiyama, L. [2 ]
Park, G. Y. [1 ]
Chang, C. S. [1 ]
Ku, S. [1 ]
Joseph, I. [3 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] MIT, Cambridge, MA 02139 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
PLASMA; EQUILIBRIUM;
D O I
10.1088/0029-5515/49/5/055025
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Resonant magnetic perturbations (RMPs) have been found effective in suppressing edge localized modes (ELMs) in the DIII-D experiment (Evans et al 2006 Phys. Plasmas 13 056121, Moyer et al 2005 Phys. Plasmas 12 056119). Simulations with the M3D initial value code indicate that plasma rotation, due to an MHD toroidal rotation or to two-fluid drifts, has an essential effect on the RMP. When the flow is below a threshold, the RMP field can couple to a resistive mode with a helical structure, different from the usual ELM, that amplifies the non-axisymmetric field. The magnetic field becomes stochastic in the outer part of the plasma, causing density and temperature loss. At higher rotation speed, the resistive mode is stabilized and the applied RMP is screened from the plasma, so that the stochastic magnetic layer is thinner and the temperature remains similar to the initial unperturbed state. The rotational flow effects, along with the remnants of the screened RMP, cause a density loss which extends into the plasma core. The two-fluid model contains intrinsic drift motion and axisymmetric toroidal rotation may not be needed to screen the RMP nor stabilize the resistive mode.
引用
收藏
页数:8
相关论文
共 26 条
[1]   Numerical study of the resonant magnetic perturbations for Type I edge localized modes control in ITER [J].
Becoulet, M. ;
Nardon, E. ;
Huysmaws, G. ;
Zwingmann, W. ;
Thomas, P. ;
Lipa, M. ;
Moyer, R. ;
Evans, T. ;
Chuyanov, V. ;
Gribov, Y. ;
Poevoi, A. ;
Vayakis, G. ;
Federici, G. ;
Saibene, G. ;
Portone, A. ;
Loarte, A. ;
Doebert, C. ;
Gimblett, C. ;
Hastie, J. ;
Parail, V. .
NUCLEAR FUSION, 2008, 48 (02)
[2]   Radial discontinuities in tokamak magnetohydrodynamic equilibria with poloidal flow [J].
Betti, R ;
Freidberg, JP .
PHYSICS OF PLASMAS, 2000, 7 (06) :2439-2448
[3]   Numerical study of neoclassical plasma pedestal in a tokamak geometry [J].
Chang, CS ;
Ku, S ;
Weitzner, H .
PHYSICS OF PLASMAS, 2004, 11 (05) :2649-2667
[4]  
Coppi B., 1976, SvJPP, V2, P533
[5]  
DEGRASSIE JS, 2009, NUCL FUSION UNPUB
[6]   The physics of edge resonant magnetic perturbations in hot tokamak plasmas [J].
Evans, T. E. ;
Burrell, K. H. ;
Fenstermacher, M. E. ;
Moyer, R. A. ;
Osborne, T. H. ;
Schaffer, M. J. ;
West, W. P. ;
Yan, L. W. ;
Boedo, J. A. ;
Doyle, E. J. ;
Jackson, G. L. ;
Joseph, I. ;
Lasnier, C. J. ;
Leonard, A. W. ;
Rhodes, T. L. ;
Thomas, P. R. ;
Watkins, J. G. ;
Zeng, L. .
PHYSICS OF PLASMAS, 2006, 13 (05)
[7]   RMP ELM suppression in DIII-D plasmas with ITER similar shapes and collisionalities [J].
Evans, T. E. ;
Fenstermacher, M. E. ;
Moyer, R. A. ;
Osborne, T. H. ;
Watkins, J. G. ;
Gohil, P. ;
Joseph, I. ;
Schaffer, M. J. ;
Baylor, L. R. ;
Becoulet, M. ;
Boedo, J. A. ;
Burrell, K. H. ;
deGrassie, J. S. ;
Finken, K. H. ;
Jernigan, T. ;
Jakubowski, M. W. ;
Lasnier, C. J. ;
Lelmen, M. ;
Leonard, A. W. ;
Lonnroth, J. ;
Nardon, E. ;
Parail, V. ;
Schmitz, O. ;
Unterberg, B. ;
West, W. P. .
NUCLEAR FUSION, 2008, 48 (02)
[8]   Bifurcated states of a rotating tokamak plasma in the presence of a static error-field [J].
Fitzpatrick, R .
PHYSICS OF PLASMAS, 1998, 5 (09) :3325-3341
[9]   Numerical study of tokamak equilibria with arbitrary flow [J].
Guazzotto, L ;
Betti, R ;
Manickam, J ;
Kaye, S .
PHYSICS OF PLASMAS, 2004, 11 (02) :604-614
[10]   THE EQUILIBRIUM AND STABILITY OF ROTATING PLASMAS [J].
HAMEIRI, E .
PHYSICS OF FLUIDS, 1983, 26 (01) :230-237