Crystal structure and site-specific mutagenesis of pterin-bound human phenylalanine hydroxylase

被引:96
作者
Erlandsen, H
Bjorgo, E
Flatmark, T
Stevens, RC
机构
[1] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
[3] Univ Bergen, Dept Biochem & Mol Biol, N-5009 Bergen, Norway
[4] Ctr Biotechnol, N-0316 Oslo, Norway
关键词
D O I
10.1021/bi992531+
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The crystal structure of the dimeric catalytic domain (residues 118-424) of human PheOH (hPheOH), cocrystallized with the oxidized form of the cofactor (7,8-dihydro-L-biopterin, BH2), has been determined at 2.0 Angstrom resolution. The pterin binds in the second coordination sphere of the catalytic iron (the C4a atom is 6.1 Angstrom away), and interacts through several hydrogen bonds to two water molecules coordinated to the iron, as well as to the main chain carbonyl oxygens of Ala322, Gly247, and Leu249 and the main chain amide of Leu249. Some important conformational changes are seen in the active site upon pterin binding, The loop between residues 245 and 250 moves in the direction of the iron, and thus allows for several important hydrogen bonds to the pterin ring to be formed. The pterin cofactor is in an ideal orientation for dioxygen to bind in a bridging position between the iron and the pterin. The pterin ring forms an aromatic pi-stacking interaction with Phe254, and Tyr325 contributes to the positioning of the pterin ring and its dihydroxypropyl side chain by hydrophobic interactions. Of particular interest in the hPheOH . BH2 binary complex structure is the finding that Glu286 hydrogen bonds to one of the water molecules coordinated to the iron as well as to a water molecule which hydrogen bonds to N3 of the pterin ring. Site-specific mutations of Glu286 (E286A and E286Q), Phe254 (F254A and F254L), and Tr325 (Y325F) have confirmed the important contribution of Glu286 and Phe254 to the normal positioning of the pterin cofactor and catalytic activity of hPheOH. Tyr325 also contributes to the correct positioning of the pterin, but has no direct function in the catalytic reaction, in agreement with the results obtained with rat TyrOH [Daubner, S. C., and Fitzpatrick, P. F. (1998) Biochemistry 37, 16440-16444]. Superposition of the binary hPheOH . BH2 complex onto the crystal structure of the ligand-free rat PheOH (which contains the regulatory and catalytic domains) [Kobe, B., Jennings, I. G,, House, C. M., Michell, B. J., Goodwill, K. E., Santarsiero, B. D., Stevens, R. C., Cotton, R. G. II., and Kemp, B. E. (1999) Nat. Struct. Biol. 6, 442-448] reveals that the C2'-hydroxyl group of BH2 is sufficiently close to form hydrogen bonds to Ser23 in the regulatory domain. Similar interactions are seen with the hPheOH adrenaline complex and Ser23. These interactions suggest a structural explanation for the specific regulatory properties of the dihydroxypropyl side chain of BH4 (negative effector) in the full-length enzyme in terms of phosphorylation of Ser16 and activation by L-Phe.
引用
收藏
页码:2208 / 2217
页数:10
相关论文
共 55 条
  • [31] IMPROVED METHODS FOR BUILDING PROTEIN MODELS IN ELECTRON-DENSITY MAPS AND THE LOCATION OF ERRORS IN THESE MODELS
    JONES, TA
    ZOU, JY
    COWAN, SW
    KJELDGAARD, M
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 : 110 - 119
  • [32] Pterin-dependent amino acid hydroxylases
    Kappock, TJ
    Caradonna, JP
    [J]. CHEMICAL REVIEWS, 1996, 96 (07) : 2659 - 2756
  • [33] KAUFMAN S, 1993, ADV ENZYMOL RAMB, V67, P77
  • [34] Structure/function relationships in human phenylalanine hydroxylase - Effect of terminal deletions on the oligomerization, activation and cooperativity of substrate binding to the enzyme
    Knappskog, PM
    Flatmark, T
    Aarden, JM
    Haavik, J
    Martinez, A
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 242 (03): : 813 - 821
  • [35] Structural basis of autoregulation of phenylalanine hydroxylase
    Kobe, B
    Jennings, IG
    House, CM
    Michell, BJ
    Goodwill, KE
    Santarsiero, BD
    Stevens, RC
    Cotton, RGH
    Kemp, BE
    [J]. NATURE STRUCTURAL BIOLOGY, 1999, 6 (05) : 442 - 448
  • [36] MOLSCRIPT - A PROGRAM TO PRODUCE BOTH DETAILED AND SCHEMATIC PLOTS OF PROTEIN STRUCTURES
    KRAULIS, PJ
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1991, 24 : 946 - 950
  • [37] Oxygen activating nonheme iron enzymes
    Lange, SJ
    Que, L
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 1998, 2 (02) : 159 - 172
  • [38] IDENTIFICATION OF 3 NOVEL MISSENSE PKU MUTATIONS AMONG CHINESE
    LI, J
    EISENSMITH, RC
    WANG, T
    LO, WHY
    HUANG, SZ
    ZENG, YT
    YUAN, LF
    LIU, SR
    WOO, SLC
    [J]. GENOMICS, 1992, 13 (03) : 894 - 895
  • [39] EXPRESSION OF RECOMBINANT HUMAN PHENYLALANINE-HYDROXYLASE AS FUSION PROTEIN IN ESCHERICHIA-COLI CIRCUMVENTS PROTEOLYTIC DEGRADATION BY HOST-CELL PROTEASES - ISOLATION AND CHARACTERIZATION OF THE WILD-TYPE ENZYME
    MARTINEZ, A
    KNAPPSKOG, PM
    OLAFSDOTTIR, S
    DOSKELAND, AP
    EIKEN, HG
    SVEBAK, RM
    BOZZINI, M
    APOLD, J
    FLATMARK, T
    [J]. BIOCHEMICAL JOURNAL, 1995, 306 : 589 - 597
  • [40] Martinez A, 1998, PTERIDINES, V9, P44