Prediction of Euclidean distances with discrete and continuous outcomes

被引:6
作者
Mortier, F.
Robin, S.
Lassalvy, S.
Baril, C. P.
Bar-Hen, A.
机构
[1] Univ Aix Marseille 3, Fac St Jerome, IMEP, F-13397 Marseille 20, France
[2] GEVES Miniere, F-78285 Guyancourt, France
[3] Inst Natl Agron Paris Grignon, F-75231 Paris 05, France
[4] Cirad Foret Plantat, F-34398 Montpellier 5, France
关键词
multivariate probit model; Euclidean distance; Mahalanobis distance; varietal distinctness;
D O I
10.1016/j.jmva.2005.06.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The objective of this paper is first to predict generalized Euclidean distances in the context of discrete and quantitative variables and then to derive their statistical properties. We first consider the simultaneous modelling of discrete and continuous random variables with covariates and obtain the likelihood. We derive an important property useful for its practical maximization. We then study the prediction of any Euclidean distances and its statistical proprieties, especially for the Mahalanobis distance. The quality of distance estimation is analyzed through simulations. This results are-applied to our motivating example: the official distinction procedure of rapeseed varieties. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1799 / 1814
页数:16
相关论文
共 19 条
[1]  
Anderson TW., 1984, INTRO MULTIVARIATE S
[2]   MULTI-VARIATE PROBIT ANALYSIS [J].
ASHFORD, JR ;
SOWDEN, RR .
BIOMETRICS, 1970, 26 (03) :535-&
[3]   GENERALIZATION OF THE MAHALANOBIS DISTANCE IN THE MIXED CASE [J].
BARHEN, A ;
DAUDIN, JJ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1995, 53 (02) :332-342
[4]   Estimating the Mahalanobis distance from mixed continuous and discrete data [J].
Bedrick, EJ ;
Lapidus, J ;
Powell, JF .
BIOMETRICS, 2000, 56 (02) :394-401
[5]   A generalized Mahalanobis distance for mixed data [J].
de Leon, AR ;
Carrière, KC .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 92 (01) :174-185
[6]  
DELEON AR, 2004, PAIRWISE LIKELIHOOD
[7]  
Genz A., 1992, J COMPUT GRAPH STAT, V1, P141
[8]  
JOE H, 1996, EXTIMATION METHOD IN
[9]  
Joe H., 1997, Multivariate models and multivariate dependence concepts, V73
[10]  
KRZANOWSKI WJ, 1983, BIOMETRIKA, V70, P235