Optimizing stability, transport, and divertor operation through plasma shaping for steady-state scenario development in DIII-D

被引:48
作者
Holcomb, C. T. [1 ]
Ferron, J. R. [2 ]
Luce, T. C. [2 ]
Petrie, T. W. [2 ]
Politzer, P. A. [2 ]
Challis, C. [3 ]
DeBoo, J. C. [2 ]
Doyle, E. J. [4 ]
Greenfield, C. M. [2 ]
Groebner, R. J. [2 ]
Groth, M. [1 ]
Hyatt, A. W. [2 ]
Jackson, G. L. [2 ]
Kessel, C. [5 ]
La Haye, R. J. [2 ]
Makowski, M. A. [1 ]
McKee, G. R. [6 ]
Murakami, M. [7 ]
Osborne, T. H. [2 ]
Park, J. -M. [7 ]
Prater, R. [2 ]
Porter, G. D. [1 ]
Reimerdes, H. [8 ]
Rhodes, T. L. [4 ]
Shafer, M. W. [6 ]
Snyder, P. B. [2 ]
Turnbull, A. D. [2 ]
West, W. P. [2 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[2] Gen Atom Co, San Diego, CA 92186 USA
[3] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[4] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[5] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[6] Univ Wisconsin, Madison, WI 53706 USA
[7] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[8] Columbia Univ, New York, NY 10027 USA
基金
英国工程与自然科学研究理事会;
关键词
plasma density; plasma instability; plasma magnetohydrodynamics; plasma toroidal confinement; plasma transport processes; Tokamak devices; H-MODE PEDESTAL; D TOKAMAK; CONFINEMENT; INJECTION; EDGE; CODE;
D O I
10.1063/1.3125934
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent studies on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] have elucidated key aspects of the dependence of stability, confinement, and density control on the plasma magnetic configuration, leading to the demonstration of nearly noninductive operation for >1 s with pressure 30% above the ideal no-wall stability limit. Achieving fully noninductive tokamak operation requires high pressure, good confinement, and density control through divertor pumping. Plasma geometry affects all of these. Ideal magnetohydrodynamics modeling of external kink stability suggests that it may be optimized by adjusting the shape parameter known as squareness (zeta). Optimizing kink stability leads to an increase in the maximum stable pressure. Experiments confirm that stability varies strongly with zeta, in agreement with the modeling. Optimization of kink stability via zeta is concurrent with an increase in the H-mode edge pressure pedestal stability. Global energy confinement is optimized at the lowest zeta tested, with increased pedestal pressure and lower core transport. Adjusting the magnetic divertor balance about a double-null configuration optimizes density control for improved noninductive auxiliary current drive. The best density control is obtained with a slight imbalance toward the divertor opposite the ion grad(B) drift direction, consistent with modeling of these effects. These optimizations have been combined to achieve noninductive current fractions near unity for over 1 s with normalized pressure of 3.5 <beta(N)< 3.9, bootstrap current fraction of >65%, and a normalized confinement factor of H-98(y,H-2)approximate to 1.5.
引用
收藏
页数:9
相关论文
共 44 条
[1]   GATO - AN MHD STABILITY CODE FOR AXISYMMETRIC PLASMAS WITH INTERNAL SEPARATRICES [J].
BERNARD, LC ;
HELTON, FJ ;
MOORE, RW .
COMPUTER PHYSICS COMMUNICATIONS, 1981, 24 (3-4) :377-380
[2]   DIFFUSION DRIVEN PLASMA CURRENTS AND BOOTSTRAP TOKAMAK [J].
BICKERTON, RJ ;
CONNOR, JW ;
TAYLOR, JB .
NATURE-PHYSICAL SCIENCE, 1971, 229 (04) :110-+
[3]   A mechanism for tearing onset near ideal stability boundaries [J].
Brennan, DP ;
La Haye, RJ ;
Turnbull, AD ;
Chu, MS ;
Jensen, TH ;
Lao, LL ;
Luce, TC ;
Politzer, PA ;
Strait, EJ ;
Kruger, SE ;
Schnack, DD .
PHYSICS OF PLASMAS, 2003, 10 (05) :1643-1652
[4]   TRANSPORT EFFECTS OF LOW (M,N) MHD MODES ON TFTR SUPERSHOTS [J].
CHANG, Z ;
FREDRICKSON, ED ;
CALLEN, JD ;
MCGUIRE, KM ;
BELL, MG ;
BUDNY, RV ;
BUSH, CE ;
DARROW, DS ;
JANOS, AC ;
JOHNSON, LC ;
PARK, HK ;
SCOTT, SD ;
STRACHAN, JD ;
SYNAKOWSKI, EJ ;
TAYLOR, G ;
WIELAND, RM ;
ZARNSTORFF, MC ;
ZWEBEN, SJ .
NUCLEAR FUSION, 1994, 34 (10) :1309-1336
[5]  
CROTINGER JA, PB2005102154 NAT TEC
[6]   Optimization of DIII-D advanced tokamak discharges with respect to the β limit -: art. no. 056126 [J].
Ferron, JR ;
Casper, TA ;
Doyle, EJ ;
Garofalo, AM ;
Gohil, P ;
Greenfield, CM ;
Hyatt, AW ;
Jayakumar, RJ ;
Kessel, C ;
Kim, JY ;
Luce, TC ;
Makowski, MA ;
Menard, J ;
Murakami, M ;
Petty, CC ;
Politzer, PA ;
Taylor, TS ;
Wade, MR .
PHYSICS OF PLASMAS, 2005, 12 (05)
[7]   Modification of high mode pedestal instabilities in the DIII-D tokamak [J].
Ferron, JR ;
Chu, MS ;
Jackson, GL ;
Lao, LL ;
Miller, RL ;
Osborne, TH ;
Snyder, PB ;
Strait, EJ ;
Taylor, TS ;
Turnbull, AD ;
Garofalo, AM ;
Makowski, MA ;
Rice, BW ;
Chance, MS ;
Baylor, LR ;
Murakami, M ;
Wade, MR .
PHYSICS OF PLASMAS, 2000, 7 (05) :1976-1983
[8]  
FERRON JR, 2008, P 22 IAEA INT C FUS
[9]   DETERMINATION OF THE NONINDUCTIVE CURRENT PROFILE IN TOKAMAK PLASMAS [J].
FOREST, CB ;
KUPFER, K ;
LUCE, TC ;
POLITZER, PA ;
LAO, LL ;
WADE, MR ;
WHYTE, DG ;
WROBLEWSKI, D .
PHYSICAL REVIEW LETTERS, 1994, 73 (18) :2444-2447
[10]   Analysis and correction of intrinsic non-axisymmetric magnetic fields in high-β DIII-D plasmas [J].
Garofalo, AM ;
La Haye, RJ ;
Scoville, JT .
NUCLEAR FUSION, 2002, 42 (11) :1335-1339