Curvature invariants, differential operators and local homogeneity

被引:37
作者
Prufer, F [1 ]
Tricerri, F [1 ]
Vanhecke, L [1 ]
机构
[1] KATHOLIEKE UNIV LEUVEN,DEPT MATH,B-3001 LOUVAIN,BELGIUM
关键词
curvature invariants; locally homogeneous spaces; Laplacian; invariant differential operators; commutativity; spaces with volume-preserving geodesic symmetries;
D O I
10.1090/S0002-9947-96-01686-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first prove that a Riemannian manifold (M, g) with globally constant additive Weyl invariants is locally homogeneous. Then we use this result to show that a manifold (M, g) whose Laplacian commutes with all invariant differential operators is a locally homogeneous space.
引用
收藏
页码:4643 / 4652
页数:10
相关论文
共 24 条
[1]  
[Anonymous], 1992, REND SEM MATH U POLI
[2]  
[Anonymous], ANN GLOBAL ANAL GEOM
[3]  
BERNDT J, 1994, CR ACAD SCI I-MATH, V318, P471
[4]  
Berndt J., 1992, DIFFER GEOM APPL, V2, P57
[5]  
BERNDT J, 1995, LECT NOTES MATH, V1598
[6]   A CLASS OF NONSYMMETRIC HARMONIC RIEMANNIAN SPACES [J].
DAMEK, E ;
RICCI, F .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :139-142
[7]  
DATRI JE, 1969, J DIFFER GEOM, V3, P467
[8]   MEAN-VALUE THEOREMS FOR RIEMANNIAN-MANIFOLDS [J].
GRAY, A ;
WILLMORE, TJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1982, 92 :343-364
[9]  
Gromov M., 1986, ERGEB MATH GRENZGEB, P363
[10]   BALL-HOMOGENEOUS AND DISK-HOMOGENEOUS RIEMANNIAN-MANIFOLDS [J].
KOWALSKI, O ;
VANHECKE, L .
MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (04) :429-444