Curvature invariants, differential operators and local homogeneity

被引:37
作者
Prufer, F [1 ]
Tricerri, F [1 ]
Vanhecke, L [1 ]
机构
[1] KATHOLIEKE UNIV LEUVEN,DEPT MATH,B-3001 LOUVAIN,BELGIUM
关键词
curvature invariants; locally homogeneous spaces; Laplacian; invariant differential operators; commutativity; spaces with volume-preserving geodesic symmetries;
D O I
10.1090/S0002-9947-96-01686-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first prove that a Riemannian manifold (M, g) with globally constant additive Weyl invariants is locally homogeneous. Then we use this result to show that a manifold (M, g) whose Laplacian commutes with all invariant differential operators is a locally homogeneous space.
引用
收藏
页码:4643 / 4652
页数:10
相关论文
共 24 条
[21]   INTERACTION OF TUBES AND SPHERES [J].
VANHECKE, L ;
WILLMORE, TJ .
MATHEMATISCHE ANNALEN, 1983, 263 (01) :31-42
[22]  
VANHECKE L, 1988, REND SEM FS U CAGL S, V58, P73
[23]  
Weyl H., 1946, The Classical Groups, V2nd ed.
[24]  
[No title captured]