A priori error analysis of residual-free bubbles for advection-diffusion problems

被引:94
作者
Brezzi, F
Hughes, TJR
Marini, LD
Russo, A
Süli, E
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[2] CNR, Ist Anal Numer, I-27100 Pavia, Italy
[3] Stanford Univ, Div Mech & Computat, Stanford, CA 94305 USA
[4] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
关键词
advection-diffusion problems; residual-free bubbles; stabilization;
D O I
10.1137/S0036142998342367
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop an a priori error analysis of a finite element approximation to the elliptic advection-diffusion equation - epsilon Delta u + a . del u = f subject to a homogeneous Dirichlet boundary condition, based on the use of residual-free bubble functions. An optimal order error bound is derived in the so-called stability-norm [GRAPHICS] where h(T) denotes the diameter of element T in the subdivision of the computational domain.
引用
收藏
页码:1933 / 1948
页数:16
相关论文
共 24 条
[21]   FINITE-ELEMENT METHODS FOR LINEAR HYPERBOLIC PROBLEMS [J].
JOHNSON, C ;
NAVERT, U ;
PITKARANTA, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 45 (1-3) :285-312
[22]  
Roos HG, 1996, NUMERICAL METHODS SI
[23]   A posteriori error estimators via bubble functions [J].
Russo, A .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (01) :33-41
[24]   Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations [J].
Russo, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 132 (3-4) :335-343