The mechanism of direct heme transfer from the streptococcal cell surface protein shp to HtsA of the HtsABC transporter

被引:77
作者
Nygaard, Tyler K.
Blouin, George C.
Liu, Mengyao
Fukumura, Maki
Olson, John S.
Fabian, Marian
Dooley, David M.
Lei, Benfang
机构
[1] Montana State Univ, Dept Vet Mol Biol, Bozeman, MT 59717 USA
[2] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA
[3] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77005 USA
[4] Rice Univ, WM Keck Ctr Computat Biol, Houston, TX 77005 USA
关键词
D O I
10.1074/jbc.M601832200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The heme-binding proteins Shp and HtsA are part of the heme acquisition machinery found in Streptococcus pyogenes. The hexacoordinate heme ( Fe( II)-protoporphyrin IX) or hemochrome form of holoShp ( hemoShp) is stable in air in Tris-HCl buffer, pH 8.0, binds to apoHtsA with a K-d of 120 +/- 18 mu M, and transfers its heme to apoHtsA with a rate constant of 28 +/- 6 s(-1) at 25 degrees C, pH 8.0. The hemoHtsA product then autoxidizes to the hexacoordinate hemin ( Fe( III)-protoporphyrin IX) or hemichrome form ( hemiHtsA) with an apparent rate constant of 0.017 +/- 0.002 s(-1). HemiShp also rapidly transfers hemin to apoHtsA through a hemiShp (.) apoHtsA complex ( K-d = 48 +/- 7 mu M) at a rate 40,000 times greater than the rate of simple hemin dissociation from hemiShp into solvent ( k(transfer) = 43 +/- 3 s(-1) versus k (-) (hemin) = 0.0003 +/- 0.00006 s(-1)). The rate constants for hemin binding to and dissociation from HtsA ( k'(hemin) approximate to 80 mu M-1 s(-1), k (-hemin) = 0.0026 +/- 0.0002 s(-1)) are 50- and 10-fold greater than the corresponding rate constants for Shp ( k (-hemin) approximate to 1.6 mu M-1 s(-1), k (-hemin) = 0.0003 s(-1)), which implies that HtsA has a more accessible active site. However, the affinity of apoHtsA for hemin ( K-hemin approximate to 31,000 mu M-1) is roughly 5-fold greater than that of apoShp ( K-hemin approximate to 5,300 mu M-1), accounting for the net transfer from Shp to HstA. These results support a direct, rapid, and affinity-driven mechanism of heme and hemin transfer from the cell surface receptor Shp to the ATP-binding cassette transporter system.
引用
收藏
页码:20761 / 20771
页数:11
相关论文
共 31 条
[21]   Ligand delivery by haem carrier proteins:: the binding of Serratia marcescens haemophore to its outer membrane receptor is mediated by two distinct peptide regions [J].
Létoffé, S ;
Debarbieux, L ;
Izadi, N ;
Delepelaire, P ;
Wandersman, C .
MOLECULAR MICROBIOLOGY, 2003, 50 (01) :77-88
[22]   Heme transfer from streptococcal cell surface protein Shp to HtsA of transporter HtsABC [J].
Liu, MY ;
Lei, BF .
INFECTION AND IMMUNITY, 2005, 73 (08) :5086-5092
[23]   Characterization of the heme environment in Arabidopsis thaliana fatty acid α-dioxygenase-1 [J].
Liu, W ;
Rogge, CE ;
Bambai, B ;
Palmer, G ;
Tsai, AL ;
Kulmacz, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (28) :29805-29815
[24]   Passage of heme-iron across the envelope of Staphylococcus aureus [J].
Mazmanian, SK ;
Skaar, EP ;
Gaspar, AH ;
Humayun, M ;
Gornicki, P ;
Jelenska, J ;
Joachmiak, A ;
Missiakas, DM ;
Schneewind, O .
SCIENCE, 2003, 299 (5608) :906-909
[25]   TRANSFERRINS AND HEME-COMPOUNDS AS IRON SOURCES FOR PATHOGENIC BACTERIA [J].
OTTO, BR ;
VERWEIJVANVUGHT, AMJJ ;
MACLAREN, DM .
CRITICAL REVIEWS IN MICROBIOLOGY, 1992, 18 (03) :217-233
[26]  
Palmer G., 2000, Physical Methods in Bioinorganic Chemistry: Spectroscopy and Magnetism, P121
[27]  
ROSE MY, 1983, J BIOL CHEM, V258, P4298
[28]   Pathogenic bacteria prefer heme [J].
Rouault, TA .
SCIENCE, 2004, 305 (5690) :1577-1578
[29]   Characterization of DorC from Rhodobacter capsulatus, a c-type cytochrome involved in electron transfer to dimethyl sulfoxide reductase [J].
Shaw, AL ;
Hochkoeppler, A ;
Bonora, P ;
Zannoni, D ;
Hanson, GR ;
McEwan, AG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (15) :9911-9914
[30]   Iron-source preference of Staphylococcus aureus infections [J].
Skaar, EP ;
Humayun, M ;
Bae, T ;
DeBord, KL ;
Schneewind, O .
SCIENCE, 2004, 305 (5690) :1626-1628