Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane

被引:80
作者
Borroni, V.
Baier, C. J.
Lang, T.
Bonini, I.
White, M. M.
Garbus, I.
Barrantes, F. J. [1 ]
机构
[1] UNESCO, Chair Biophys & Mol Neurobiol, RA-8000 Bahia Blanca, Argentina
[2] UNESCO, Inst Ivest Biofquim, RA-8000 Bahia Blanca, Argentina
[3] Max Planck Inst Biophys Chem, Gottingen, Germany
[4] Drexel Univ, Coll Med, Dept Pharmacol & Physiol, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
cholesterol; cyclodextrins; fluorescence microscopy; endocytosis; lipid domains;
D O I
10.1080/09687860600903387
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Novel effects of cholesterol (Chol) on nicotinic acetylcholine receptor (AChR) cell-surface stability, internalization and function are reported. AChRs are shown to occur in the form of submicron-sized (240-280 nm) domains that remain stable at the cell-surface membrane of CHO-K1/A5 cells over a period of hours. Acute (30 min, 37 degrees C) exposure to methyl-beta-cycloclextrin (CDx), commonly used as a diagnostic tool of endocytic mechanisms, is shown here to enhance AChR internalization kinetics in the receptor-expressing clonal cell line. This treatment drastically reduced (similar to 50%) the number of receptor domains by accelerating the rate of enclocytosis (t(1/2) decreased from 1.5-0.5 h). In addition, Chol depletion produced ion channel gain-of-function of the remaining cell-surface AChR, whereas Chol enrichment had the opposite effect. Fluorescence measurements under conditions of direct excitation of the probe Laurdan and of Forster-type resonance energy transfer (FRET) using the intrinsic protein fluorescence as donor both indicated an increase in membrane fluidity in the bulk membrane and in the immediate environment of the AChR protein upon Chol depletion. Homeostatic control of Chol content at the plasmalemma may thus modulate cell-surface organization and stability of receptor domains, and fine tune receptor channel function to temporarily compensate for acute AChR loss from the cell surface.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 35 条
[1]   Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer [J].
Antollini, SS ;
Soto, MA ;
deRomanelli, IB ;
GutierrezMerino, C ;
Sotomayor, P ;
Barrantes, FJ .
BIOPHYSICAL JOURNAL, 1996, 70 (03) :1275-1284
[2]   Effect of membrane lipid composition on the conformational equilibria of the nicotinic acetylcholine receptor [J].
Baenziger, JE ;
Morris, ML ;
Darsaut, TE ;
Ryan, SE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (02) :777-784
[3]   Structural basis for lipid modulation of nicotinic acetylcholine receptor function [J].
Barrantes, FJ .
BRAIN RESEARCH REVIEWS, 2004, 47 (1-3) :71-95
[4]   Topography of nicotinic acetylcholine receptor membrane-embedded domains [J].
Barrantes, FJ ;
Antollini, SS ;
Blanton, MP ;
Prieto, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (48) :37333-37339
[5]   The steroid promegestone is a noncompetitive antagonist of the Torpedo nicotinic acetylcholine receptor that interacts with the lipid-protein interface [J].
Blanton, MP ;
Xie, Y ;
Dangott, LJ ;
Cohen, JB .
MOLECULAR PHARMACOLOGY, 1999, 55 (02) :269-278
[6]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[7]   Structure and function of sphingolipid- and cholesterol-rich membrane rafts [J].
Brown, DA ;
London, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17221-17224
[8]   Membrane lipid rafts are necessary for the maintenance of the α7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons [J].
Brusés, JL ;
Chauvet, N ;
Rutishauser, U .
JOURNAL OF NEUROSCIENCE, 2001, 21 (02) :504-512
[9]   Identifying the cholesterol binding domain in the nicotinic acetylcholine receptor with [125I]azido-cholesterol [J].
Corbin, J ;
Wang, HH ;
Blanton, MP .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1998, 1414 (1-2) :65-74
[10]   Lipid microdomains in cell surface membranes [J].
Edidin, M .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1997, 7 (04) :528-532