cDNAs derived from primary and small cytoplasmic Alu (scAlu) transcripts

被引:50
作者
Shaikh, TH
Roy, AM
Kim, J
Batzer, MA
Deininger, PL
机构
[1] LOUISIANA STATE UNIV,MED CTR,DEPT BIOCHEM & MOL BIOL,NEW ORLEANS,LA 70112
[2] LOUISIANA STATE UNIV,MED CTR,DEPT PATHOL,NEW ORLEANS,LA 70112
[3] LOUISIANA STATE UNIV,MED CTR,STANLEY S SCOTT CANC CTR,NEW ORLEANS,LA 70112
[4] LOUISIANA STATE UNIV,MED CTR,NEUROSCI CTR EXCELLENCE,NEW ORLEANS,LA 70112
[5] ALTON OCHSNER MED FDN & OCHSNER CLIN,MOL GENET LAB,NEW ORLEANS,LA 70121
关键词
SINEs; transcription; RNApolIII; retroposon; cDNAs;
D O I
10.1006/jmbi.1997.1161
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have isolated and sequenced twenty-six cDNAs derived from primary Alu transcripts. Most cDNAs (22/26) sequenced end in multiple T residues, known to be at the termination for RNA polymerase III-directed transcripts. We conclude that these cDNAs were derived from authentic, RNA polymerase III-directed primary Alu transcripts. Sequence alignment of the cDNAs with Alu consensus sequences show that the cDNAs belong to different, previously described Alu subfamilies. The sequence variation observed in the 3' non-Alu regions of each of the cDNAs led us to conclude that they were derived from different genomic loci, thus demonstrating that multiple Alu loci are transcriptionally active. The subfamily distribution of the cDNAs suggests that transcriptional activity is biased towards evolutionarily younger Alu subfamilies, with a strong selection for the consensus sequence in the first 42 bases and the promoter B box. Sequence data from seven cDNAs derived from small cytoplasmic Alu (scAlu) transcripts, a processed form of Alu transcripts, also have a similar bias towards younger Alu subfamilies. About half of these cDNAs are due to processing or degradation, but the other half appear to be due to the formation of a cryptic RNA polymerase III termination signal in multiple loci. Using our sequence data, we have isolated a transcriptionally active genomic Alu element belonging to the Ya5 subfamily. In vitro transcription studies of this element suggest that its flanking sequences contribute to its transcriptional activity. The role of flanking sequences and other factors involved in transcriptional activity of Alu elements are discussed. (C) 1997 Academic Press Limited.
引用
收藏
页码:222 / 234
页数:13
相关论文
共 64 条
[1]  
ANDREWS PW, 1984, LAB INVEST, V50, P147
[2]   STRUCTURE AND VARIABILITY OF RECENTLY INSERTED ALU FAMILY MEMBERS [J].
BATZER, MA ;
KILROY, GE ;
RICHARD, PE ;
SHAIKH, TH ;
DESSELLE, TD ;
HOPPENS, CL ;
DEININGER, PL .
NUCLEIC ACIDS RESEARCH, 1990, 18 (23) :6793-6798
[3]   A CONSENSUS ALU REPEAT PROBE FOR PHYSICAL MAPPING [J].
BATZER, MA ;
ALEGRIAHARTMAN, M ;
DEININGER, PL .
GENETIC ANALYSIS-BIOMOLECULAR ENGINEERING, 1994, 11 (02) :34-38
[4]   DISPERSION AND INSERTION POLYMORPHISM IN 2 SMALL SUBFAMILIES OF RECENTLY AMPLIFIED HUMAN ALU REPEATS [J].
BATZER, MA ;
RUBIN, CM ;
HELLMANNBLUMBERG, U ;
ALEGRIAHARTMAN, M ;
LEEFLANG, EP ;
STERN, JD ;
BAZAN, HA ;
SHAIKH, TH ;
DEININGER, PL ;
SCHMID, CW .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 247 (03) :418-427
[5]   Standardized nomenclature for Alu repeats [J].
Batzer, MA ;
Deininger, PL ;
HellmannBlumberg, U ;
Jurka, J ;
Labuda, D ;
Rubin, CM ;
Schmid, CW ;
Zietkiewicz, E ;
Zuckerkandl, E .
JOURNAL OF MOLECULAR EVOLUTION, 1996, 42 (01) :3-6
[6]   A HUMAN-SPECIFIC SUBFAMILY OF ALU-SEQUENCES [J].
BATZER, MA ;
DEININGER, PL .
GENOMICS, 1991, 9 (03) :481-487
[7]   TRANSCRIPTIONAL INITIATION IS CONTROLLED BY UPSTREAM GC-BOX INTERACTIONS IN A TATAA-LESS PROMOTER [J].
BLAKE, MC ;
JAMBOU, RC ;
SWICK, AG ;
KAHN, JW ;
AZIZKHAN, JC .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (12) :6632-6641
[8]   SOURCES AND EVOLUTION OF HUMAN ALU REPEATED SEQUENCES [J].
BRITTEN, RJ ;
BARON, WF ;
STOUT, DB ;
DAVIDSON, EH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (13) :4770-4774
[9]   THE CURRENT SOURCE OF HUMAN ALU RETROPOSONS IS A CONSERVED GENE SHARED WITH OLD-WORLD MONKEY [J].
BRITTEN, RJ ;
STOUT, DB ;
DAVIDSON, EH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (10) :3718-3722
[10]  
Chesnokov I, 1996, MOL CELL BIOL, V16, P7084