Cooling a nanomechanical resonator with quantum back-action

被引:457
作者
Naik, A.
Buu, O.
LaHaye, M. D.
Armour, A. D.
Clerk, A. A.
Blencowe, M. P.
Schwab, K. C. [1 ]
机构
[1] Univ Maryland, Lab Phys Sci, College Pk, MD 20740 USA
[2] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20740 USA
[3] Univ Maryland, Dept Phys, College Pk, MD 20740 USA
[4] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[5] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[6] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1038/nature05027
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum mechanics demands that the act of measurement must affect the measured object. When a linear amplifier is used to continuously monitor the position of an object, the Heisenberg uncertainty relationship requires that the object be driven by force impulses, called back-action(1-3). Here we measure the back-action of a superconducting single-electron transistor (SSET) on a radiofrequency nanomechanical resonator. The conductance of the SSET, which is capacitively coupled to the resonator, provides a sensitive probe of the latter's position; back-action effects manifest themselves as an effective thermal bath, the properties of which depend sensitively on SSET bias conditions. Surprisingly, when the SSET is biased near a transport resonance, we observe cooling of the nanomechanical mode from 550 mK to 300 mK - an effect that is analogous to laser cooling in atomic physics. Our measurements have implications for nanomechanical readout of quantum information devices and the limits of ultrasensitive force microscopy ( such as single-nuclear-spin magnetic resonance force microscopy). Furthermore, we anticipate the use of these back-action effects to prepare ultracold and quantum states of mechanical structures, which would not be accessible with existing technology.
引用
收藏
页码:193 / 196
页数:4
相关论文
共 30 条
[1]   Search for gravitational waves from galactic and extra-galactic binary neutron stars -: art. no. 082001 [J].
Abbott, B ;
Abbott, R ;
Adhikari, R ;
Ageev, A ;
Allen, B ;
Amin, R ;
Anderson, SB ;
Anderson, WG ;
Araya, M ;
Armandula, H ;
Ashley, M ;
Asiri, F ;
Aufmuth, P ;
Aulbert, C ;
Babak, S ;
Balasubramanian, R ;
Ballmer, S ;
Barish, BC ;
Barker, C ;
Barker, D ;
Barnes, M ;
Barr, B ;
Barton, MA ;
Bayer, K ;
Beausoleil, R ;
Belczynski, K ;
Bennett, R ;
Berukoff, SJ ;
Betzwieser, J ;
Bhawal, B ;
Bilenko, IA ;
Billingsley, G ;
Black, E ;
Blackburn, K ;
Blackburn, L ;
Bland, B ;
Bochner, B ;
Bogue, L ;
Bork, R ;
Bose, S ;
Brady, PR ;
Braginsky, VB ;
Brau, JE ;
Brown, DA ;
Bullington, A ;
Bunkowski, A ;
Buonanno, A ;
Burgess, R ;
Busby, D ;
Butler, WE .
PHYSICAL REVIEW D, 2005, 72 (08)
[2]  
[Anonymous], 2003, QUANTUM NOISE MESOSC
[3]   Classical dynamics of a nanomechanical resonator coupled to a single-electron transistor [J].
Armour, AD ;
Blencowe, MP ;
Zhang, Y .
PHYSICAL REVIEW B, 2004, 69 (12)
[4]   Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box [J].
Armour, AD ;
Blencowe, MP ;
Schwab, KC .
PHYSICAL REVIEW LETTERS, 2002, 88 (14) :148301/1-148301/4
[5]   Dynamics of a nanomechanical resonator coupled to a superconducting single-electron transistor [J].
Blencowe, MP ;
Imbers, J ;
Armour, AD .
NEW JOURNAL OF PHYSICS, 2005, 7
[6]  
Braginsky V. B., 1995, QUANTUM MEASUREMENT
[7]   Low quantum noise tranquilizer for Fabry-Perot interferometer [J].
Braginsky, VB ;
Vyatchanin, SP .
PHYSICS LETTERS A, 2002, 293 (5-6) :228-234
[8]   QUANTUM LIMITS ON NOISE IN LINEAR-AMPLIFIERS [J].
CAVES, CM .
PHYSICAL REVIEW D, 1982, 26 (08) :1817-1839
[9]   Charge and current fluctuations in a superconducting single-electron transistor near a Cooper pair resonance [J].
Choi, MS ;
Plastina, F ;
Fazio, R .
PHYSICAL REVIEW B, 2003, 67 (04)
[10]   Quantum nanoelectromechanics with electrons, quasi-particles and Cooper pairs: effective bath descriptions and strong feedback effects [J].
Clerk, AA ;
Bennett, S .
NEW JOURNAL OF PHYSICS, 2005, 7