Degradation behavior of poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) micelles in aqueous solution

被引:121
作者
Hu, Y
Zhang, LY
Cao, Y
Ge, HX
Jiang, XQ [1 ]
Yang, CZ
机构
[1] Nanjing Univ, Coll Chem & Chem Engn, Lab Mesoscop Chem, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Coll Chem & Chem Engn, Dept Polymer Sci & Engn, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Dept Mat Sci, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Jiangsu Provincial Lab Nanotechnol, Nanjing 210093, Peoples R China
关键词
D O I
10.1021/bm049845j
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Poly(e-caprolactone)-b-poly(ethylene glycol)-b-poly (epsilon-caprol actone) triblock copolymers were synthesized by the ring-opening polymerization of epsilon-caprolactone in the presence of hydroxyl-terminated poly(ethylene glycol) with different molecular weights, using stannous octoate catalyst. Micelles prepared by the precipitation method with these triblock copolymers exhibit a core-shell structure. The degradation behaviors of these core-shell micelles in aqueous solution were investigated by FT-IR, H-1 NMR, GPC, DLS, TEM, and AFM. It was found that the degradation behavior of micelles in aqueous solution was quite different from that of bulk materials. The size of the micelles increased in the initial degradation stages and decreased gradually when the degradation period was extended. The caprolactone/ethylene oxide (CL/EO) ratio in micelles measured by NMR also shows an increase at the initial degradation stage and a decrease at later stages. The morphology of these micelles became more and more irregular during the degradation period. We explain the observed behavior by a two-stage degradation mechanism with interfacial erosion between the cores and the shells followed by core erosion.
引用
收藏
页码:1756 / 1762
页数:7
相关论文
共 34 条
[11]   Polymeric micelles - a new generation of colloidal drug carriers [J].
Jones, MC ;
Leroux, JC .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 1999, 48 (02) :101-111
[12]   Block copolymer micelles for drug delivery: design, characterization and biological significance [J].
Kataoka, K ;
Harada, A ;
Nagasaki, Y .
ADVANCED DRUG DELIVERY REVIEWS, 2001, 47 (01) :113-131
[13]   Polymeric micelles as new drug carriers [J].
Kwon, GS ;
Okano, T .
ADVANCED DRUG DELIVERY REVIEWS, 1996, 21 (02) :107-116
[14]   Enzymatic degradation of block copolymers prepared from ε-caprolactone and poly(ethylene glycol) [J].
Li, SM ;
Garreau, H ;
Pauvert, B ;
McGrath, J ;
Toniolo, A ;
Vert, M .
BIOMACROMOLECULES, 2002, 3 (03) :525-530
[15]   Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(L-lactic acid) blocks [J].
Li, SM ;
Rashkov, I ;
Espartero, JL ;
Manolova, N ;
Vert, M .
MACROMOLECULES, 1996, 29 (01) :57-62
[16]  
LIN WJ, 2003, PHARM RES, V20, P468
[17]  
Liu XY, 2002, ANGEW CHEM INT EDIT, V41, P2950, DOI 10.1002/1521-3773(20020816)41:16<2950::AID-ANIE2950>3.0.CO
[18]  
2-K
[19]  
Moghimi SM, 2001, PHARMACOL REV, V53, P283
[20]   Biodegradable nanoparticles for drug and gene delivery to cells and tissue [J].
Panyam, J ;
Labhasetwar, V .
ADVANCED DRUG DELIVERY REVIEWS, 2003, 55 (03) :329-347