Approximation by discrete variational splines

被引:30
作者
Kouibia, A [1 ]
Pasadas, M [1 ]
机构
[1] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
smoothing; variational curve and surface; spline; finite element;
D O I
10.1016/S0377-0427(99)00316-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a numerical approximation of curves and surfaces from a given scattered data set. An approximating curve or surface problem is obtained by minimizing a quadratic functional in a parametric finite element space, its solution is called a discrete smoothing variational spline. The existence and uniqueness of this problem are shown, as long as the convergence of the method is established. Finally some particular examples are given. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:145 / 156
页数:12
相关论文
共 12 条
  • [1] Spline approximation of explicit surfaces containing irregularities
    Arcangeli, R
    Manzanilla, R
    Torrens, JJ
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1997, 31 (05): : 643 - 676
  • [2] ARCANGELI R, 1986, 862 CNRS
  • [3] SO-CALLED SPLINE FUNCTIONS DEFINED ON A CONVEX SET
    ATTEIA, M
    [J]. NUMERISCHE MATHEMATIK, 1968, 12 (03) : 192 - &
  • [4] CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
  • [5] CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
  • [6] DUCHESNE L, 1994, ACT 3 JORN ZAR PAU M, P173
  • [7] DUCHON J, 1976, REV FR AUTOMAT INFOR, V10, P5
  • [8] GREINER G, 1994, WAVELETS IMAGES SURF, P277
  • [9] Kouibia A, 1998, INNOV APPL MATH, P295
  • [10] KOUIBIA A, 1998, IN PRESS APPL MATH L