We present an O(n) time algorithm for computing row-wise maxima or minima of an implicit, totally monotone n x n matrix whose entries represent shortest-path distances between pairs of vertices in a simple polygon. We apply this result to derive improved algorithms for several well-known problems in computational geometry. Most prominently, we obtain linear-time algorithms for computing the geodesic diameter, all farthest neighbors, and external farthest neighbors of a simple polygon, improving the previous best result by a factor of O(log n) in each case.
机构:
Digital Equipment Corp, Syst Res Ctr, Palo Alto, CA 94301 USA
Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USADigital Equipment Corp, Syst Res Ctr, Palo Alto, CA 94301 USA
Guibas, Leonidas
;
Hershberger, John
论文数: 0引用数: 0
h-index: 0
机构:
Digital Equipment Corp, Syst Res Ctr, Palo Alto, CA 94301 USADigital Equipment Corp, Syst Res Ctr, Palo Alto, CA 94301 USA
Hershberger, John
;
Snoeyink, Jack
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USADigital Equipment Corp, Syst Res Ctr, Palo Alto, CA 94301 USA
机构:
Digital Equipment Corp, Syst Res Ctr, Palo Alto, CA 94301 USA
Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USADigital Equipment Corp, Syst Res Ctr, Palo Alto, CA 94301 USA
Guibas, Leonidas
;
Hershberger, John
论文数: 0引用数: 0
h-index: 0
机构:
Digital Equipment Corp, Syst Res Ctr, Palo Alto, CA 94301 USADigital Equipment Corp, Syst Res Ctr, Palo Alto, CA 94301 USA
Hershberger, John
;
Snoeyink, Jack
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USADigital Equipment Corp, Syst Res Ctr, Palo Alto, CA 94301 USA