Death of retinal neurons in streptozotocin-induced diabetic mice

被引:378
作者
Martin, PM
Roon, P
Van Ells, TK
Ganapathy, V
Smith, SB
机构
[1] Med Coll Georgia, Dept Cellular Biol & Anat, Augusta, GA 30912 USA
[2] Med Coll Georgia, Dept Biochem & Mol Biol, Augusta, GA 30912 USA
[3] Med Coll Georgia, Dept Ophthalmol, Augusta, GA 30912 USA
关键词
D O I
10.1167/iovs.04-0247
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PURPOSE. Neuronal cell death has been reported in retinas of humans with diabetic retinopathy and in diabetic rat models. Little is known about neuronal cell death in mouse models of diabetic retinopathy. This study was designed to determine whether neurons are lost in diabetic mouse retinas and whether the loss involves an apoptotic process. METHODS. Three-week-old C57Bl/6 mice were made diabetic with streptozotocin. They were studied over the course of 14 weeks after onset of diabetes. Eyes were processed for morphometric analysis and detection of apoptotic cells by TUNEL analysis and activated caspase-3 and were subjected to electron microscopy. RESULTS. Morphometric analysis of retinal cross sections of mice that had been diabetic 14 weeks showed similar to 20% to 25% fewer cells in the ganglion cell layer compared with age-matched control mice. There was a modest, but significant, decrease in the thickness of the whole retina and the inner and outer nuclear layers in mice that had been diabetic for 10 weeks. TUNEL analysis and detection of active caspase-3 revealed that cells of the ganglion cell layer were dying by apoptosis. Electron microscopic analysis detected morphologic features characteristic of apoptosis, including margination of chromatin and crenated nuclei of cells in the ganglion cell layer. CONCLUSIONS. The data suggest that in diabetic mouse retinas, neurons in the ganglion cell layer die, and this death occurs through an apoptotic pathway. Diabetic mice may be appropriate and valuable models for studies of neuronal cell death in diabetes.
引用
收藏
页码:3330 / 3336
页数:7
相关论文
共 41 条
[1]   The potential role of PKC β in diabetic retinopathy and macular edema [J].
Aiello, LP .
SURVEY OF OPHTHALMOLOGY, 2002, 47 :S263-S269
[2]   Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy [J].
Ambati, J ;
Chalam, KV ;
Chawla, DK ;
DAngio, CT ;
Guillet, EG ;
Rose, SJ ;
Vanderlinde, RE ;
Ambati, BK .
ARCHIVES OF OPHTHALMOLOGY, 1997, 115 (09) :1161-1166
[3]   A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat [J].
Asnaghi, V ;
Gerhardinger, C ;
Hoehn, T ;
Adeboje, A ;
Lorenzi, M .
DIABETES, 2003, 52 (02) :506-511
[4]   A new view of diabetic retinopathy: a neurodegenerative disease of the eye [J].
Barber, AJ .
PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2003, 27 (02) :283-290
[5]   Neural apoptosis in the retina during experimental and human diabetes - Early onset and effect of insulin [J].
Barber, AJ ;
Lieth, E ;
Khin, SA ;
Antonetti, DA ;
Buchanan, AG ;
Gardner, TW .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 102 (04) :783-791
[6]  
BEK T, 1994, ACTA OPHTHALMOL, V72, P409
[7]  
BLOODWORTH JMB, 1962, DIABETES, V2, P1
[8]   A cautionary note on the use of the TUNEL stain to determine apoptosis [J].
CharriautMarlangue, C ;
BenAri, Y .
NEUROREPORT, 1995, 7 (01) :61-64
[9]  
CHIHARA E, 1993, OPHTHALMOLOGY, V100, P1147
[10]   Potential new medical therapies for diabetic retinopathy: Protein kinase C inhibitors [J].
Frank, RN .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2002, 133 (05) :693-698