Functional analysis of the Alternaria brassicicola non-ribosomal peptide synthetase gene AbNPS2 reveals a role in conidial cell wall construction

被引:36
作者
Kim, Kwang-Hyung
Cho, Yangrae
La Rota, Mauricio
Cramer, Robert A., Jr.
Lawrence, Christopher B. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA
[3] Duke Univ, Med Ctr, Dept Mol Genet & Microbiol, Durham, NC 27708 USA
关键词
D O I
10.1111/j.1364-3703.2006.00366.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Alternaria brassicicola is a necrotrophic pathogen causing black spot disease on virtually all cultivated Brassica crops worldwide. In many plant pathosystems fungal secondary metabolites derived from non-ribosomal peptide synthetases (NPSs) are phytotoxic virulence factors or are antibiotics thought to be important for niche competition with other micro-organisms. However, many of the functions of NPS genes and their products are largely unknown. In this study, we investigated the function of one of the A. brassicicola NPS genes, AbNPS2. The predicted amino acid sequence of AbNPS2 showed high sequence similarity with A. brassicae, AbrePsy1, Cochliobolus heterostrophus, NPS4 and a Stagonospora nodorum NPS. The AbNPS2 open reading frame was predicted to be 22 kb in length and encodes a large protein ( 7195 amino acids) showing typical NPS modular organization. Gene expression analysis of AbNPS2 in wild-type fungus indicated that it is expressed almost exclusively in conidia and conidiophores, broadly in the reproductive developmental phase. AbNPS2 gene disruption mutants showed abnormal spore cell wall morphology and a decreased hydrophobicity phenotype. Conidia of abnps2 mutants displayed an aberrantly inflated cell wall and an increase in lipid bodies compared with wild-type. Further phenotypic analyses of abnps2 mutants showed decreased spore germination rates both in vitro and in vivo, and a marked reduction in sporulation in vivo compared with wild-type fungus. Moreover, virulence tests on Brassicas with abnps2 mutants revealed a significant reduction in lesion size compared with wild-type but only when aged spores were used in experiments. Collectively, these results indicate that AbNPS2 plays an important role in development and virulence.
引用
收藏
页码:23 / 39
页数:17
相关论文
共 103 条
[31]   STRUCTURE OF BRASSICICOLIN-A - A NOVEL ISOCYANIDE ANTIBIOTIC FROM THE PHYLLOPLANE FUNGUS ALTERNARIA-BRASSICICOLA [J].
GLOER, JB ;
POCH, GK ;
SHORT, DM ;
MCCLOSKEY, DV .
JOURNAL OF ORGANIC CHEMISTRY, 1988, 53 (16) :3758-3761
[32]   Analysis of a nonribosomal peptide synthetase gene from Alternaria brassicae and flanking genomic sequences [J].
Guillemette, T ;
Sellam, A ;
Simoneau, P .
CURRENT GENETICS, 2004, 45 (04) :214-224
[33]   PHYSIOLOGICAL MEANING OF SECONDARY METABOLISM [J].
HAAVIK, HI .
FOLIA MICROBIOLOGICA, 1979, 24 (04) :365-367
[34]   MOLECULAR CHARACTERIZATION OF THE ENNIATIN SYNTHETASE GENE ENCODING A MULTIFUNCTIONAL ENZYME CATALYZING N-METHYLDEPSIPEPTIDE FORMATION IN FUSARIUM-SCIRPI [J].
HAESE, A ;
SCHUBERT, M ;
HERRMANN, M ;
ZOCHER, R .
MOLECULAR MICROBIOLOGY, 1993, 7 (06) :905-914
[35]  
Horinouchi S, 1990, Tanpakushitsu Kakusan Koso, V35, P2567
[36]   CLIMATIC FACTORS INFLUENCING SPORE PRODUCTION IN ALTERNARIA-BRASSICAE AND ALTERNARIA-BRASSICICOLA [J].
HUMPHERSONJONES, FM ;
PHELPS, K .
ANNALS OF APPLIED BIOLOGY, 1989, 114 (03) :449-458
[37]  
Hungria Mariangela, 2004, Genet Mol Res, V3, P102
[38]   ULTRASTRUCTURAL ARCHITECTURE OF WALLS OF SOME HYPHAL FUNGI [J].
HUNSLEY, D ;
BURNETT, JH .
JOURNAL OF GENERAL MICROBIOLOGY, 1970, 62 (AUG) :203-+
[39]   The Neurospora crassa genome opens up the world of filamentous fungi -: art. no. 217 [J].
Hynes, MJ .
GENOME BIOLOGY, 2003, 4 (06)
[40]   Protein family annotation in a multiple alignment viewer [J].
Johnson, JM ;
Mason, K ;
Moallemi, C ;
Xi, HL ;
Somaroo, S ;
Huang, ES .
BIOINFORMATICS, 2003, 19 (04) :544-545