Burst synchrony patterns in hippocampal pyramidal cell model networks

被引:2
作者
Booth, V [1 ]
Bose, A [1 ]
机构
[1] New Jersey Inst Technol, Dept Math Sci, Ctr Appl Math & Stat, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
D O I
10.1088/0954-898X/13/2/301
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Types of, mechanisms for and stability of synchrony are discussed in the context of two-compartment CA3 pyramidal cell and interneuron model networks. We show how the strength and timing of inhibitory and excitatory synaptic inputs work together to produce either perfectly synchronized or nearly synchronized oscillations, across different burst or spiking modes of firing. The analysis shows how excitatory inputs tend to desynchronize cells, and how common, slowly decaying inhibition can be used to synchronize them. We also introduce the concept of 'equivalent networks' in which networks with different architectures and synaptic connections display identical firing patterns.
引用
收藏
页码:157 / 177
页数:21
相关论文
共 25 条
[21]   A MODEL OF A CA3 HIPPOCAMPAL PYRAMIDAL NEURON INCORPORATING VOLTAGE-CLAMP DATA ON INTRINSIC CONDUCTANCES [J].
TRAUB, RD ;
WONG, RKS ;
MILES, R ;
MICHELSON, H .
JOURNAL OF NEUROPHYSIOLOGY, 1991, 66 (02) :635-650
[22]  
Traub RD, 2000, J NEUROSCI, V20, P2086
[23]  
Van Vreeswijk C, 1994, J Comput Neurosci, V1, P313
[24]   Gamma-oscillations support optimal retrieval in associative memories of two-compartment neurons [J].
Wennekers, T ;
Sommer, FT .
NEUROCOMPUTING, 1999, 26-7 :573-578
[25]  
YLINEN A, 1995, J NEUROSCI, V15, P30