Strength, strain-rate sensitivity and ductility of copper with nanoscale twins

被引:474
作者
Dao, M.
Lu, L.
Shen, Y. F.
Suresh, S.
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
nanocrystalline materials; nanoscale twins; crystal plasticity; copper; computational model;
D O I
10.1016/j.actamat.2006.06.062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a comprehensive computational analysis of the deformation of ultrafine crystalline pure Cu with nanoscale growth twins. This physically motivated model benefits from our experimental studies of the effects of the density of coherent nanotwins on the plastic deformation characteristics of Cu, and from post-deformation transmission electron microscopy investigations of dislocation structures in the twinned metal. The analysis accounts for high plastic anisotropy and rate sensitivity anisotropy by treating the twin boundary as an internal interface and allowing special slip geometry arrangements that involve soft and hard modes of deformation. This model correctly predicts the experimentally observed trends of the effects of twin density on flow strength, rate sensitivity of plastic flow and ductility, in addition to matching many of the quantitative details of plastic deformation reasonably well. The computational simulations also provide critical mechanistic insights into why the metal with nanoscale twins can provide the same level of yield strength, hardness and strain rate sensitivity as a nanostructured counterpart without twins (but of grain size comparable to the twin spacing of the twinned Cu). The analysis also offers some useful understanding of why the nanotwinned Qu with high strength does not lead to diminished ductility with structural refinement involving twins, whereas nanostructured Cu normally causes the ductility to be compromised at the expense of strength upon grain refinement. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5421 / 5432
页数:12
相关论文
共 37 条
[1]  
[Anonymous], I PHYS C SER
[2]   STRAIN LOCALIZATION IN DUCTILE SINGLE-CRYSTALS [J].
ASARO, RJ ;
RICE, JR .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1977, 25 (05) :309-338
[3]   Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins [J].
Asaro, RJ ;
Suresh, S .
ACTA MATERIALIA, 2005, 53 (12) :3369-3382
[4]   LATENT HARDENING IN SINGLE-CRYSTALS .2. ANALYTICAL CHARACTERIZATION AND PREDICTIONS [J].
BASSANI, JL ;
WU, TY .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 435 (1893) :21-41
[5]  
CARREKAR RP, 1953, ACTA METALL, V1, P640
[6]   Hardness and strain rate sensitivity of nanocrystalline Cu [J].
Chen, J ;
Lu, L ;
Lu, K .
SCRIPTA MATERIALIA, 2006, 54 (11) :1913-1918
[7]   Tensile properties of in situ consolidated nanocrystalline Cu [J].
Cheng, S ;
Ma, E ;
Wang, YM ;
Kecskes, LJ ;
Youssef, KM ;
Koch, CC ;
Trociewitz, UP ;
Han, K .
ACTA MATERIALIA, 2005, 53 (05) :1521-1533
[8]   DEFORMATION TWINNING [J].
CHRISTIAN, JW ;
MAHAJAN, S .
PROGRESS IN MATERIALS SCIENCE, 1995, 39 (1-2) :1-157
[9]   COMPUTATIONAL MODELING OF SINGLE-CRYSTALS [J].
CUITINO, AM ;
ORTIZ, M .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1993, 1 (03) :225-263
[10]   Strain rate sensitivity and apparent activation volume measurements on equal channel angular extruded Cu processed by one to twelve passes [J].
Dalla Torre, F ;
Pereloma, EV ;
Davies, CHJ .
SCRIPTA MATERIALIA, 2004, 51 (05) :367-371