Arsenic and selenium in microbial metabolism

被引:456
作者
Stolz, John E. [1 ]
Basu, Partha
Santini, Joanne M.
Oremland, Ronald S.
机构
[1] Duquesne Univ, Dept Sci Biol, Pittsburgh, PA 15282 USA
[2] Duquesne Univ, Dept Chem & Biochem, Pittsburgh, PA 15282 USA
[3] UCL, Dept Biol, London WCIE 6BT, England
[4] US Geol Survey, Div Water Resources, Menlo Pk, CA 94025 USA
关键词
selenate respiration; selenocysteine; arsenate reductase; arsenite oxidase; biogeochemical cycles; organoarsenicals;
D O I
10.1146/annurev.micro.60.080805.142053
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in Se-76. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.
引用
收藏
页码:107 / 130
页数:24
相关论文
共 149 条
[1]   The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10 [J].
Afkar, E ;
Lisak, J ;
Saltikov, C ;
Basu, P ;
Oremland, RS ;
Stolz, JF .
FEMS MICROBIOLOGY LETTERS, 2003, 226 (01) :107-112
[2]   MICROBE GROWS BY REDUCING ARSENIC [J].
AHMANN, D ;
ROBERTS, AL ;
KRUMHOLZ, LR ;
MOREL, FMM .
NATURE, 1994, 371 (6500) :750-750
[3]   Microbial mobilization of arsenic from sediments of the Aberjona Watershed [J].
Ahmann, D ;
Krumholz, LR ;
Hemond, HF ;
Lovley, DR ;
Morel, FMM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (10) :2923-2930
[4]  
ANDERSON GL, 1992, J BIOL CHEM, V267, P23674
[5]   Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity [J].
Aposhian, HV .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1997, 37 :397-419
[6]   Arsenic speciation and reactivity in poultry litter [J].
Arai, Y ;
Lanzirotti, A ;
Sutton, S ;
Davis, JA ;
Sparks, DL .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (18) :4083-4090
[7]   Microbial methylation of metalloids: Arsenic, antimony, and bismuth [J].
Bentley, R ;
Chasteen, TG .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2002, 66 (02) :250-+
[8]   Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A [J].
Bertero, MG ;
Rothery, RA ;
Palak, M ;
Hou, C ;
Lim, D ;
Blasco, F ;
Weiner, JH ;
Strynadka, NCJ .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (09) :681-687
[9]   Bacillus arsenicoselenatis, sp nov, and Bacillus selenitireducens, sp nov:: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic [J].
Blum, JS ;
Bindi, AB ;
Buzzelli, J ;
Stolz, JF ;
Oremland, RS .
ARCHIVES OF MICROBIOLOGY, 1998, 171 (01) :19-30
[10]  
Bock A, 2000, Biofactors, V11, P77