ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs

被引:210
作者
Balwierz, Piotr J.
Pachkov, Mikhail
Arnold, Phil
Gruber, Andreas J.
Zavolan, Mihaela
van Nimwegen, Erik [1 ]
机构
[1] Univ Basel, Biozentrum, CH-4056 Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
NF-KAPPA-B; EPITHELIAL-MESENCHYMAL TRANSITION; TRANSCRIPTION FACTOR-BINDING; UNFOLDED PROTEIN RESPONSE; GENE-EXPRESSION; MESSENGER-RNA; MASTER REGULATOR; CELL STATES; ER STRESS; MOUSE;
D O I
10.1101/gr.169508.113
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Accurate reconstruction of the regulatory networks that control gene expression is one of the key current challenges in molecular biology. Although gene expression and chromatin state dynamics are ultimately encoded by constellations of binding sites recognized by regulators such as transcriptions factors (TFs) and microRNAs (miRNAs), our understanding of this regulatory code and its context-dependent read-out remains very limited. Given that there are thousands of potential regulators in mammals, it is not practical to use direct experimentation to identify which of these play a key role for a particular system of interest. We developed a methodology that models gene expression or chromatin modifications in terms of genome-wide predictions of regulatory sites and completely automated it into a web-based tool called ISMARA (Integrated System for Motif Activity Response Analysis). Given only gene expression or chromatin state data across a set of samples as input, ISMARA identifies the key TFs and miRNAs driving expression/chromatin changes and makes detailed predictions regarding their regulatory roles. These include predicted activities of the regulators across the samples, their genome-wide targets, enriched gene categories among the targets, and direct interactions between the regulators. Applying ISMARA to data sets from well-studied systems, we show that it consistently identifies known key regulators ab initio. We also present a number of novel predictions including regulatory interactions in innate immunity, a master regulator of mucociliary differentiation, TFs consistently disregulated in cancer, and TFs that mediate specific chromatin modifications.
引用
收藏
页码:869 / 884
页数:16
相关论文
共 108 条
[1]   Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop [J].
Aceto, Nicola ;
Sausgruber, Nina ;
Brinkhaus, Heike ;
Gaidatzis, Dimos ;
Martiny-Baron, Georg ;
Mazzarol, Giovanni ;
Confalonieri, Stefano ;
Quarto, Micaela ;
Hu, Guang ;
Balwierz, Piotr J. ;
Pachkov, Mikhail ;
Elledge, Stephen J. ;
van Nimwegen, Erik ;
Stadler, Michael B. ;
Bentires-Alj, Mohamed .
NATURE MEDICINE, 2012, 18 (04) :529-537
[2]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[3]   Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity [J].
Arner, Erik ;
Mejhert, Niklas ;
Kulyte, Agne ;
Balwierz, Piotr J. ;
Pachkov, Mikhail ;
Cormont, Mireille ;
Lorente-Cebrian, Silvia ;
Ehrlund, Anna ;
Laurencikiene, Jurga ;
Heden, Per ;
Dahlman-Wright, Karin ;
Tanti, Jean-Francois ;
Hayashizaki, Yoshihide ;
Ryden, Mikael ;
Dahlman, Ingrid ;
van Nimwegen, Erik ;
Daub, Carsten O. ;
Arner, Peter .
DIABETES, 2012, 61 (08) :1986-1993
[4]   Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting [J].
Arnold, Phil ;
Schoeler, Anne ;
Pachkov, Mikhail ;
Balwierz, Piotr J. ;
Jorgensen, Helle ;
Stadler, Michael B. ;
van Nimwegen, Erik ;
Schuebeler, Dirk .
GENOME RESEARCH, 2013, 23 (01) :60-73
[5]   MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences [J].
Arnold, Phil ;
Erb, Ionas ;
Pachkov, Mikhail ;
Molina, Nacho ;
van Nimwegen, Erik .
BIOINFORMATICS, 2012, 28 (04) :487-494
[6]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[7]   The impact of microRNAs on protein output [J].
Baek, Daehyun ;
Villen, Judit ;
Shin, Chanseok ;
Camargo, Fernando D. ;
Gygi, Steven P. ;
Bartel, David P. .
NATURE, 2008, 455 (7209) :64-U38
[8]   Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data [J].
Balwierz, Piotr J. ;
Carninci, Piero ;
Daub, Carsten O. ;
Kawai, Jun ;
Hayashizaki, Yoshihide ;
Van Belle, Werner ;
Beisel, Christian ;
van Nimwegen, Erik .
GENOME BIOLOGY, 2009, 10 (07)
[9]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[10]   Activation of the insulin gene promoter through a direct effect of hepatocyte nuclear factor 4α [J].
Bartoov-Shifman, R ;
Hertz, R ;
Wang, HY ;
Wollheim, CB ;
Bar-Tana, J ;
Walker, MD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (29) :25914-25919