Targeted proteomic study of the cyclin-Cdk module

被引:90
作者
Archambault, V [1 ]
Chang, EJ [1 ]
Drapkin, BJ [1 ]
Cross, FR [1 ]
Chait, BT [1 ]
Rout, MP [1 ]
机构
[1] Rockefeller Univ, New York, NY 10021 USA
关键词
D O I
10.1016/j.molcel.2004.05.025
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cell division cycle of the yeast S. cerevisiae is driven by one Cdk (cyclin-dependent kinase), which becomes active when bound to one of nine cyclin subunits. Elucidation of Cdk substrates and other Cdk-associated proteins is essential for a full understanding of the cell cycle. Here, we report the results of a targeted proteomics study using affinity purification coupled to mass spectrometry. Our study identified numerous proteins in association with particular cyclin-Cdk complexes. These included phosphorylation substrates, ubiquitination-degradation proteins, adaptors, and inhibitors. Some associations were previously known, and for others, we confirmed their specificity and biological relevance. Using a hypothesis-driven mass spectrometric approach, we also mapped in vivo phosphorylation at Cdk consensus motif-containing peptides within several cyclin-associated candidate Cdk substrates. Our results demonstrate that this approach can be used to detect a host of transient and dynamic protein associations within a biological module.
引用
收藏
页码:699 / 711
页数:13
相关论文
共 79 条
[1]   2 NOVEL RELATED YEAST NUCLEOPORINS NUP170P AND NUP157P - COMPLEMENTATION WITH THE VERTEBRATE HOMOLOG NUP155P AND FUNCTIONAL INTERACTIONS WITH THE YEAST NUCLEAR PORE-MEMBRANE PROTEIN POM152P [J].
AITCHISON, JD ;
ROUT, MP ;
MARELLI, M ;
BLOBEL, G ;
WOZNIAK, RW .
JOURNAL OF CELL BIOLOGY, 1995, 131 (05) :1133-1148
[2]   Genetic and biochemical evaluation of the importance of Cdc6 in regulating mitotic exit [J].
Archambault, V ;
Li, CHX ;
Tackett, AJ ;
Wäsch, R ;
Chait, BT ;
Rout, MP ;
Cross, FR .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (11) :4592-4604
[3]   Differential cellular localization among mitotic cyclins from Saccharomyces cerevisiae:: a new role for the axial budding protein Bud3 in targeting Clb2 to the mother-bud neck [J].
Bailly, E ;
Cabantous, S ;
Sondaz, D ;
Bernadac, A ;
Simon, MN .
JOURNAL OF CELL SCIENCE, 2003, 116 (20) :4119-4130
[4]   Men and sin: What's the difference? [J].
Bardin, AJ ;
Amon, A .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (11) :815-826
[5]   Studies of yeast Kluyveromyces lactis mutations conferring super-secretion of recombinant proteins [J].
Bartkeviciute, D ;
Sasnauskas, K .
YEAST, 2003, 20 (01) :1-11
[6]   DNA replication in eukaryotic cells [J].
Bell, SP ;
Dutta, A .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :333-374
[7]   Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4 [J].
Blondel, M ;
Galan, JM ;
Chi, Y ;
Lafourcade, C ;
Longaretti, C ;
Deshaies, RJ ;
Peter, M .
EMBO JOURNAL, 2000, 19 (22) :6085-6097
[8]   Role of the ubiquitin-selective CDC48UFD1/NPL4 chaperone (segregase) in ERAD of OLE1 and other substrates [J].
Braun, S ;
Matuschewski, K ;
Rape, M ;
Thoms, S ;
Jentsch, S .
EMBO JOURNAL, 2002, 21 (04) :615-621
[9]  
CHANG EJ, 2004, IN PRESS ANAL CHEM
[10]   IDENTIFICATION OF A GENE NECESSARY FOR CELL-CYCLE ARREST BY A NEGATIVE GROWTH-FACTOR OF YEAST - FAR1 IS AN INHIBITOR OF A G1 CYCLIN, CLN2 [J].
CHANG, F ;
HERSKOWITZ, I .
CELL, 1990, 63 (05) :999-1011