Tuning the Organic Solar Cell Performance of Acceptor 2,6-Dialkylaminonaphthalene Diimides by Varying a Linker between the Imide Nitrogen and a Thiophene Group

被引:30
作者
Fernando, Roshan [1 ]
Mao, Zhenghao [1 ]
Muller, Evan [1 ]
Ruan, Fei [1 ]
Sauve, Genevieve [1 ]
机构
[1] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA
基金
美国国家科学基金会;
关键词
SUBSTITUTED NAPHTHALENE DIIMIDE; N-TYPE SEMICONDUCTOR; OPEN-CIRCUIT VOLTAGE; CONJUGATED POLYMERS; ELECTRON-ACCEPTOR; PHOTOVOLTAICS; DERIVATIVES; EFFICIENCY; COPOLYMERS; TRANSPORT;
D O I
10.1021/jp411432a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Core-substituted naphthalene diimides (NDI) are promising candidates as acceptors for organic solar cells. To study their structure property relationships, a series of 2,6-dialkylamino-NDI compounds with various substituents were synthesized, characterized, and tested in bulk heterojunction solar cells by blending with regioregular poly(3-hexylthiophene) (P3HT). The imide substituents consisted of a linker connected to a thiophene group, where the linker was phenyl, methyl, or ethyl. The core substituents were cyclohexylamino or 2-ethylhexylamino. While the various substituents had little effect on the optoelectronic properties in solution, they strongly affected device performance and blend morphology. Under the conditions studied, the best performance was obtained with the methyl linker combined with the cyclohexylamino core substituent, with a power conversion efficiency of 0.48% and a high open circuit voltage of 0.97 V. For blends of P3HT with modified NDI non-fullerene acceptors, the methyl linker promoted larger phase-separated domains than the ethyl or phenyl linkers. DFT calculations showed that the linker determines the orientation of the thiophene conjugated plane with respect to the NDI conjugated plane. That angle was 114 degrees, 45 degrees-61 degrees, and 8 degrees for the methyl, phenyl, and ethyl linkers, respectively. Using thiophene at the end of the imide substituent adds a unique dimension to tune morphology and influence the molecular heterojunction between donor and acceptor.
引用
收藏
页码:3433 / 3442
页数:10
相关论文
共 51 条
[1]   Design of New Electron Acceptor Materials for Organic Photovoltaics: Synthesis, Electron Transport, Photophysics, and Photovoltaic Properties of Oligothiophene-Functionalized Naphthalene Diimides [J].
Ahmed, Eilaf ;
Ren, Guoqiang ;
Kim, Felix S. ;
Hollenbeck, Emily C. ;
Jenekhe, Samson A. .
CHEMISTRY OF MATERIALS, 2011, 23 (20) :4563-4577
[2]   Small-Molecule, Nonfullerene Acceptors for Polymer Bulk Heterojunction Organic Photovoltaics [J].
Anthony, John E. .
CHEMISTRY OF MATERIALS, 2011, 23 (03) :583-590
[3]   High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives [J].
Backer, Scott A. ;
Sivula, Kevin ;
Kavulak, David F. ;
Frechet, Jean M. J. .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :2927-2929
[4]   Green Dioxythiophene-Benzothiadiazole Donor-Acceptor Copolymers for Photovoltaic Device Applications [J].
Beaujuge, Pierre M. ;
Subbiah, Jegadesan ;
Choudhury, Kaushik Roy ;
Ellinger, Stefan ;
McCarley, Tracy D. ;
So, Franky ;
Reynolds, John R. .
CHEMISTRY OF MATERIALS, 2010, 22 (06) :2093-2106
[5]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[6]   Solution-Processed Organic Solar Cells with Power Conversion Efficiencies of 2.5% using Benzothiadiazole/Imide-Based Acceptors [J].
Bloking, Jason T. ;
Han, Xu ;
Higgs, Andrew T. ;
Kastrop, John P. ;
Pandey, Laxman ;
Norton, Joseph E. ;
Risko, Chad ;
Chen, Cynthia E. ;
Bredas, Jean-Luc ;
McGehee, Michael D. ;
Sellinger, Alan .
CHEMISTRY OF MATERIALS, 2011, 23 (24) :5484-5490
[7]  
Brabec C.J., 2008, Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies, P575
[8]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Brabec, Christoph J. ;
Gowrisanker, Srinivas ;
Halls, Jonathan J. M. ;
Laird, Darin ;
Jia, Shijun ;
Williams, Shawn P. .
ADVANCED MATERIALS, 2010, 22 (34) :3839-3856
[9]   Strain and Huckel Aromaticity: Driving Forces for a Promising New Generation of Electron Acceptors in Organic Electronics [J].
Brunetti, F. G. ;
Gong, X. ;
Tong, M. ;
Heeger, A. J. ;
Wudl, Fred .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (03) :532-536
[10]   Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications [J].
Cardona, Claudia M. ;
Li, Wei ;
Kaifer, Angel E. ;
Stockdale, David ;
Bazan, Guillermo C. .
ADVANCED MATERIALS, 2011, 23 (20) :2367-2371