Survival and proliferation of cells expressing caspase-uncleavable poly(ADP-ribose) polymerase in response to death-inducing DNA damage by an alkylating agent

被引:44
作者
Halappanavar, SS
Le Rhun, Y
Mounir, S
Martins, LM
Huot, J
Earnshaw, WC
Shah, GM
机构
[1] Univ Laval, Fac Med, Ctr Hosp Univ Quebec, Med Res Ctr,Lab Skin Canc Res, Quebec City, PQ G1V 4G2, Canada
[2] Univ Edinburgh, Inst Cell & Mol Biol, Edinburgh EH9 3JR, Midlothian, Scotland
[3] Univ Laval, Hotel Dieu, Ctr Rech Cancerol, Quebec City, PQ G1K 7P4, Canada
基金
英国惠康基金;
关键词
D O I
10.1074/jbc.274.52.37097
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To determine whether caspase-3-induced cleavage of poly(ADP-ribose) polymerase (PARP), a DNA damage-sensitive enzyme, alters the balance between survival and death of the cells following DNA damage, we created stable cell lines that express either caspase-uncleavable mutant or wild type PARP in the background of PARP (-/-) fibroblasts. The survival and apoptotic responses of these cells were compared after exposure to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a DNA-damaging agent that activates PARP, or to tumor necrosis factor-alpha, which causes apoptosis without initial DNA damage. In response to MNNG, the cells with caspase-uncleavable PARP were very resistant to loss of viability or induction of apoptosis. Most significantly, similar to 25% of these cells survived and retained clonogenicity at a level of DNA damage that eliminated the cells with wild type PARP or PARP (-/-) cells. Expression of caspase-uncleavable PARP could not protect the cells from death induced by tumor necrosis factor, although there was a slower progression of apoptotic events in these cells. Therefore, one of the functions for cleavage of PARP during apoptosis induced by alkylating agents is to prevent survival of the extensively damaged cells.
引用
收藏
页码:37097 / 37104
页数:8
相关论文
共 64 条
[1]   Human ICE/CED-3 protease nomenclature [J].
Alnemri, ES ;
Livingston, DJ ;
Nicholson, DW ;
Salvesen, G ;
Thornberry, NA ;
Wong, WW ;
Yuan, JY .
CELL, 1996, 87 (02) :171-171
[2]   PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase [J].
Amé, JC ;
Rolli, V ;
Schreiber, V ;
Niedergang, C ;
Apiou, F ;
Decker, P ;
Muller, S ;
Hoger, T ;
Murcia, JMD ;
de Murcia, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (25) :17860-17868
[3]   Higher plants possess two structurally different poly(ADP-ribose) polymerases [J].
Babiychuk, E ;
Cottrill, PB ;
Storozhenko, S ;
Fuangthong, M ;
Chen, YM ;
O'Farrell, MK ;
Van Montagu, M ;
Inzé, D ;
Kushnir, S .
PLANT JOURNAL, 1998, 15 (05) :635-645
[4]  
BANASIK M, 1992, J BIOL CHEM, V267, P1569
[5]   SYMPOSIUM - CELLULAR-RESPONSE TO DNA DAMAGE - THE ROLE OF POLY(ADP-RIBOSE) - POLY(ADP-RIBOSE) IN THE CELLULAR-RESPONSE TO DNA DAMAGE [J].
BERGER, NA .
RADIATION RESEARCH, 1985, 101 (01) :4-15
[6]   pADPRT-2:: a novel mammalian polymerizing(ADP-ribosyl)transferase gene related to truncated pADPRT homologues in plants and Caenorhabditis elegans [J].
Berghammer, H ;
Ebner, M ;
Marksteiner, R ;
Auer, B .
FEBS LETTERS, 1999, 449 (2-3) :259-263
[7]   Bcl-x(L) can inhibit apoptosis in cells that have undergone Fas-induced protease activation [J].
Boise, LH ;
Thompson, CB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3759-3764
[8]   Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis - Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells [J].
Boulares, AH ;
Yakovlev, AG ;
Ivanova, V ;
Stoica, BA ;
Wang, GP ;
Iyer, S ;
Smulson, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (33) :22932-22940
[9]   Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin [J].
Burkart, V ;
Wang, ZQ ;
Radons, J ;
Heller, B ;
Herceg, Z ;
Stingl, L ;
Wagner, EF ;
Kolb, H .
NATURE MEDICINE, 1999, 5 (03) :314-319
[10]   The regulation of anoikis: MEKK-1 activation requires cleavage by caspases [J].
Cardone, MH ;
Salvesen, GS ;
Widmann, C ;
Johnson, G ;
Frisch, SM .
CELL, 1997, 90 (02) :315-323