Exact numerical calculation of the density of states of the fluctuating gap model

被引:27
作者
Bartosch, L [1 ]
Kopietz, P [1 ]
机构
[1] Univ Gottingen, Inst Theoret Phys, D-37073 Gottingen, Germany
来源
PHYSICAL REVIEW B | 1999年 / 60卷 / 23期
关键词
D O I
10.1103/PhysRevB.60.15488
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a powerful numerical algorithm for calculating the density of states rho(omega) of the fluctuating gap model, which describes the low-energy physics of disordered Peierls and spin-Peierls chains. We obtain rho(omega) with unprecedented accuracy from the solution of a simple initial value problem for a single Riccati equation. Generating Gaussian disorder with large correlation length xi by means of a simple Markov process, we present a quantitative study of the behavior of rho(omega) in the pseudogap regime. In particular, we show that in the commensurate case and in the absence of forward scattering the pseudogap is overshadowed by a Dyson singularity below a certain energy scale omega*, which we explicitly calculate as a function of xi. [S0163-1829(99)02948-3].
引用
收藏
页码:15488 / 15491
页数:4
相关论文
共 17 条
[11]  
OVCHINNIKOV AA, 1977, ZH EKSP TEOR FIZ+, V73, P650
[12]  
SADOVSKII MV, 1979, ZH EKSP TEOR FIZ+, V77, P2070
[13]   Weak pseudogap behavior in the underdoped cuprate superconductors [J].
Schmalian, J ;
Pines, D ;
Stojkovic, B .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3839-3842
[14]  
Schopohl N., CONDMAT9804064
[15]   GAUGE INVARIANCE AND MASS .2. [J].
SCHWINGER, J .
PHYSICAL REVIEW, 1962, 128 (05) :2425-&
[16]   Pseudogap in one dimension [J].
Tchernyshyov, O .
PHYSICAL REVIEW B, 1999, 59 (02) :1358-1368
[17]  
Vetterling W. T, 2002, NUMERICAL RECIPES C