FXYD7, mapping of functional sites involved in endoplasmic reticulum export, association with and regulation of Na,K-ATPase

被引:34
作者
Crambert, G [1 ]
Li, CM [1 ]
Swee, LK [1 ]
Geering, K [1 ]
机构
[1] Univ Lausanne, Inst Pharmacol & Toxicol, CH-1005 Lausanne, Switzerland
关键词
D O I
10.1074/jbc.M313494200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The brain-specific FXYD7 is a member of the recently defined FXYD family that associates with the alpha1-beta1 Na,K-ATPase isozyme and induces an about 2-fold decrease in its apparent K+ affinity. By using the Xenopus oocyte as an expression system, we have investigated the role of conserved and FXYD7-specific amino acids in the cellular routing of FXYD7 and in its association with and regulation of Na,K-ATPase. In contrast to FXYD2 and FXYD4, the studies on FXYD7 show that the conserved FXYD motif in the extracytoplasmic domain is not involved in the efficient association of FXYD7 with Na,K-ATPase. On the other hand, the conserved Gly(40) and Gly(29), located on the same face of the transmembrane helix, were found to be implicated both in the association with and the regulation of Na,K-ATPase. Mutational analysis of FXYD7-specific regions revealed the presence of an ER export signal at the end of the cytoplasmic tail. Deletion of a C-terminal valine residue in FXYD7 significantly delayed and decreased its O-glycosylation processing and retarded the rate of its cell surface expression. This result indicates that the C-terminal valine residue is involved in the rapid and selective ER export of FXYD7, which could explain the observed post-translational association of FXYD7 with Na,K-ATPase. In conclusion, our study on FXYD7 provides new information on structural determinants of general importance for FXYD protein action. Moreover, FXYD7 is identified as a new member of proteins with a regulated ER export, which suggests that, among FXYD proteins, FXYD7 has a particular regulatory function in brain.
引用
收藏
页码:30888 / 30895
页数:8
相关论文
共 34 条
[1]   The γ subunit modulates Na+ and K+ affinity of the renal Na,K-ATPase [J].
Arystarkhova, E ;
Wetzel, RK ;
Asinovski, NK ;
Sweadner, KJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (47) :33183-33185
[2]   The gamma subunit is a specific component of the Na,K-ATPase and modulates its transport function [J].
Beguin, P ;
Wang, XY ;
Firsov, D ;
Puoti, A ;
Claeys, D ;
Horisberger, JD ;
Geering, K .
EMBO JOURNAL, 1997, 16 (14) :4250-4260
[3]   FXYD7 is a brain-specific regulator of Na,K-ATPase α1-β isozymes [J].
Béguin, P ;
Crambert, G ;
Monnet-Tschudi, F ;
Uldry, M ;
Horisberger, JD ;
Garty, H ;
Geering, K .
EMBO JOURNAL, 2002, 21 (13) :3264-3273
[4]   CHIF, a member of the FXYD protein family, is a regulator of Na,K-ATPase distinct from the γ-subunit [J].
Béguin, P ;
Crambert, G ;
Guennoun, S ;
Garty, H ;
Horisberger, JD ;
Geering, K .
EMBO JOURNAL, 2001, 20 (15) :3993-4002
[5]   Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function [J].
Blanco, G ;
Mercer, RW .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 1998, 275 (05) :F633-F650
[6]   Sequence and structure-based prediction of eukaryotic protein phosphorylation sites [J].
Blom, N ;
Gammeltoft, S ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 294 (05) :1351-1362
[7]   Carboxyl-terminal truncations of human anion exchanger impair its trafficking to the plasma membrane [J].
Cordat, E ;
Li, J ;
Reithmeier, RAF .
TRAFFIC, 2003, 4 (09) :642-651
[8]   Transport and pharmacological properties of nine different human Na,K-ATPase isozymes [J].
Crambert, G ;
Hasler, U ;
Beggah, AT ;
Yu, CL ;
Modyanov, NN ;
Horisberger, JD ;
Lelièvre, L ;
Geering, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) :1976-1986
[9]   Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties [J].
Crambert, G ;
Füzesi, M ;
Garty, H ;
Karlish, S ;
Geering, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (17) :11476-11481
[10]  
CRAMBERT G, 2003, SCI STKE, V166, pRE1