Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance

被引:260
作者
Sugiura, T [1 ]
Kobayashi, Y [1 ]
Oka, S [1 ]
Waku, K [1 ]
机构
[1] Teikyo Univ, Fac Pharmaceut Sci, Kanagawa, Japan
来源
PROSTAGLANDINS LEUKOTRIENES AND ESSENTIAL FATTY ACIDS | 2002年 / 66卷 / 2-3期
关键词
D O I
10.1054/plef.2001.0356
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
N-arachidonoylethanolamine (anandamide) was the first endogenous cannabinoid receptor ligand to be discovered. Dual synthetic pathways for anandamide have been proposed. One is the formation from free arachidonic acid and ethanolamine, and the other is the formation from N-arachidonoyl phosphatidylethanolamine (PE) through the action of a phosphodiesterase. These pathways, however, do not appear to be able to generate a large amount of anandamide, at least under physiological conditions. The generation of anandamide from free arachidonic acid and ethanolamine is catalyzed by a degrading enzyme anandamide amidohydrolase/fatty acid amide hydrolase operating in reverse and requires large amounts of substrates. As for the second pathway, arachidonic acids esterified at the 1-position of glycerophospholipids, which are mostly esterified at the 2-position, are utilized for the formation of N-arachidonoyl PE, a stored precursor form of anandamide. In fact, the actual levels of anandamide in various tissues are generally low except in a few cases. 2-Arachidonoylglycerol (2-AG) was the second endogenous cannabinoid receptor ligand to be discovered. 2-AG is a degradation product of arachidonic acid-containing glycerophospholipids such as inositol phospholipids. Several investigators have demonstrated that 2-AG is produced in a variety of tissues and cells upon stimulation. 2-AG acts as a full agonist at the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating and indicates that 2-AG is the most efficacious endogenous natural ligand for the cannabinoid receptors. In this review, we summarize the tissue levels, biosynthesis, degradation and possible physiological significance of two endogenous cannabimimetic molecules, anandamide and 2-AG. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:173 / 192
页数:20
相关论文
共 245 条
[51]   ANANDAMIDE AMIDOHYDROLASE ACTIVITY IN RAT-BRAIN MICROSOMES - IDENTIFICATION AND PARTIAL CHARACTERIZATION [J].
DESARNAUD, F ;
CADAS, H ;
PIOMELLI, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (11) :6030-6035
[52]   ENZYMATIC-SYNTHESIS AND DEGRADATION OF ANANDAMIDE, A CANNABINOID RECEPTOR AGONIST [J].
DEUTSCH, DG ;
CHIN, SA .
BIOCHEMICAL PHARMACOLOGY, 1993, 46 (05) :791-796
[53]   The cellular uptake of anandamide is coupled to its breakdown by fatty-acid amide hydrolase [J].
Deutsch, DG ;
Glaser, ST ;
Howell, JM ;
Kunz, JS ;
Puffenbarger, RA ;
Hillard, CJ ;
Anbumrad, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (10) :6967-6973
[54]   Production and physiological actions of anandamide in the vasculature of the rat kidney [J].
Deutsch, DG ;
Goligorsky, MS ;
Schmid, PC ;
Krebsbach, RJ ;
Schmid, HHO ;
Das, SK ;
Dey, SK ;
Arreaza, G ;
Thorup, C ;
Stefano, G ;
Moore, LC .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (06) :1538-1546
[55]  
DEVANE WA, 1988, MOL PHARMACOL, V34, P605
[56]   ISOLATION AND STRUCTURE OF A BRAIN CONSTITUENT THAT BINDS TO THE CANNABINOID RECEPTOR [J].
DEVANE, WA ;
HANUS, L ;
BREUER, A ;
PERTWEE, RG ;
STEVENSON, LA ;
GRIFFIN, G ;
GIBSON, D ;
MANDELBAUM, A ;
ETINGER, A ;
MECHOULAM, R .
SCIENCE, 1992, 258 (5090) :1946-1949
[57]   ENZYMATIC-SYNTHESIS OF ANANDAMIDE, AN ENDOGENOUS LIGAND FOR THE CANNABINOID RECEPTOR, BY BRAIN MEMBRANES [J].
DEVANE, WA ;
AXELROD, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (14) :6698-6701
[58]  
DEWEY WL, 1986, PHARMACOL REV, V38, P151
[59]   Levels, metabolism, and pharmacological activity of anandamide in CB1 cannabinoid receptor knockout mice:: Evidence for non-CB1, non-CB2 receptor-mediated actions of anandamide in mouse brain [J].
Di Marzo, V ;
Breivogel, CS ;
Tao, Q ;
Bridgen, DT ;
Razdan, RK ;
Zimmer, AM ;
Zimmer, A ;
Martin, BR .
JOURNAL OF NEUROCHEMISTRY, 2000, 75 (06) :2434-2444
[60]  
Di Marzo V, 1998, BIOCHEMISTRY-MOSCOW+, V63, P13