Evaluation of structural and evolutionary contributions to deleterious mutation prediction

被引:181
作者
Saunders, CT
Baker, D
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[3] Howard Hughes Med Inst, Seattle, WA 98195 USA
关键词
deleterious mutation prediction; protein mutagenesis; human disease allele; protein evolution; protein structure prediction;
D O I
10.1016/S0022-2836(02)00813-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Methods for automated prediction of deleterious protein mutations have utilized both structural and evolutionary information but the relative contribution of these two factors remains unclear. To address this, we have used a variety of structural and evolutionary features to create simple deleterious mutation models that have been tested on both experimental mutagenesis and human allele data. We find that the most accurate predictions are obtained using a solvent-accessibility term, the C-beta density, and a score derived from homologous sequences, SIFT. A classification tree using these two features has a cross-validated prediction error of 20.5% on an experimental mutagenesis test set when the prior probability for deleterious and neutral cases is equal, whereas this prediction error is 28.8% and 22.2% using either the C-beta density or SIFT alone. The improvement imparted by structure increases when fewer homologs are available: when restricted to three homologs the prediction error improves from 26.9% using SIFT alone to 22.4% using SIFT and the C-beta density, or 24.8% using SIFT and a noisy C-beta density term approximating the inaccuracy of ab initio structures modeled by the Rosetta method. We conclude that methods for deleterious mutation prediction should include structural information when fewer than five to ten homologs are available, and that ab initio predicted structures may soon be useful in such cases when high-resolution structures are unavailable. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:891 / 901
页数:11
相关论文
共 25 条