The flow of a DAE near a singular equilibrium

被引:20
作者
Beardmore, RE
Laister, R
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ W England, Sch Math Sci, Bristol BS16 1QY, Avon, England
关键词
Lipschitz solutions; nonhyperbolic equilibrium; quasi-invariant manifolds;
D O I
10.1137/S0895479800378660
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the differential- algebraic equation ( DAE) taxonomy by assuming that the linearization of a DAE about a singular equilibrium has a particular index- 2 Kronecker normal form. A Lyapunov Schmidt procedure is used to reduce the DAE to a quasilinear normal form which is shown to posses quasi- invariant manifolds which intersect the singularity. In turn, this provides solutions of the DAE which pass through the singularity.
引用
收藏
页码:106 / 120
页数:15
相关论文
共 12 条
[1]   Stability and bifurcation properties of index-1 DAEs [J].
Beardmore, RE .
NUMERICAL ALGORITHMS, 1998, 19 (1-4) :43-53
[2]   The singularity-induced bifurcation and its Kronecker normal form [J].
Beardmore, RE .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :126-137
[3]   Mixed symbolic-numerical computations with general DAEs - I: System properties [J].
Campbell, SL ;
Hollenbeck, R ;
Yeomans, K ;
Zhong, Y .
NUMERICAL ALGORITHMS, 1998, 19 (1-4) :73-83
[4]   Global travelling waves in reaction-convection-diffusion equations [J].
de Pablo, A ;
Sánchez, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 165 (02) :377-413
[5]  
Kato T., 1980, PERTURBATION THEORY
[6]   STABILIZATION OF SOLUTIONS OF NONLINEAR AND DEGENERATE EVOLUTION-EQUATIONS [J].
LANGLAIS, M ;
PHILLIPS, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1985, 9 (04) :321-333
[7]   Criteria for the trivial solution of differential algebraic equations with small nonlinearities to be asymptotically stable [J].
Marz, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 225 (02) :587-607
[8]   A GEOMETRIC TREATMENT OF IMPLICIT DIFFERENTIAL-ALGEBRAIC EQUATIONS [J].
RABIER, PJ ;
RHEINBOLDT, WC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (01) :110-146
[9]   ON IMPASSE POINTS OF QUASI-LINEAR DIFFERENTIAL-ALGEBRAIC EQUATIONS [J].
RABIER, PJ ;
RHEINBOLDT, WC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 181 (02) :429-454
[10]   TRAVELING-WAVE PHENOMENA IN SOME DEGENERATE REACTION-DIFFUSION EQUATIONS [J].
SANCHEZGARDUNO, F ;
MAINI, PK .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 117 (02) :281-319