Properties of lactic acid based polymers and their correlation with composition

被引:1147
作者
Södergård, A
Stolt, M
机构
[1] Hycail BV, NL-9804 TG Noordhorn, Netherlands
[2] Turku Ctr Biomat, FIN-20520 Turku, Finland
关键词
lactic acid based polymers; polycondensation; ring-opening polymerization; copolyesters; aliphatic polyesters; poly(L-lactide); PDLLA; potylactic acid;
D O I
10.1016/s0079-6700(02)00012-6
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This review focuses on the properties of lactic acid based polymers and the correlation to the structure of the polymers. Lactic acid based polymers prepared by polycondensation (PC), ring-opening polymerization (ROP), and other methods (chain extension, grafting) are discussed as well as modifications where structural changes have occurred due to post-polymerization reactions (peroxide melt-modification, radiation processing). The different types of polymers include copolymers prepared by ROP from L,L-lactide and D,D-lactide, glycolide (GA), epsilon-caprolactone (CL), trimethylene carbonate (TMC), 1,5-dioxepan-2-one (DXO), and other cyclic analogues. The thermophysical properties, the solubility, the miscibility, and the mechanical properties have been reviewed. In addition the hydrolytic stability, the thermal stability, the radiation degradation, and the biodegradation of the polymers have been covered. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1123 / 1163
页数:41
相关论文
共 396 条
[1]   EVALUATION OF POLY(L-LACTIC ACID) AS A MATERIAL FOR INTRAVASCULAR POLYMERIC STENTS [J].
AGRAWAL, CM ;
HAAS, KF ;
LEOPOLD, DA ;
CLARK, HG .
BIOMATERIALS, 1992, 13 (03) :176-182
[2]   Aliphatic polyesters and their copolymers synthesized through direct condensation polymerization [J].
Ajioka, M ;
Suizu, H ;
Higuchi, C ;
Kashima, T .
POLYMER DEGRADATION AND STABILITY, 1998, 59 (1-3) :137-143
[3]   THE BASIC PROPERTIES OF POLY(LACTIC ACID) PRODUCED BY THE DIRECT CONDENSATION POLYMERIZATION OF LACTIC-ACID [J].
AJIOKA, M ;
ENOMOTO, K ;
SUZUKI, K ;
YAMAGUCHI, A .
JOURNAL OF ENVIRONMENTAL POLYMER DEGRADATION, 1995, 3 (04) :225-234
[4]   INFLUENCE OF MOLECULAR-STRUCTURE ON THE DEGRADATION MECHANISM OF DEGRADABLE POLYMERS - IN-VITRO DEGRADATION OF POLY(TRIMETHYLENE CARBONATE), POLY(TRIMETHYLENE CARBONATE-CO-CAPROLACTONE), AND POLY(ADIPIC ANHYDRIDE) [J].
ALBERTSSON, AC ;
EKLUND, M .
JOURNAL OF APPLIED POLYMER SCIENCE, 1995, 57 (01) :87-103
[5]  
ALBERTSSON AC, 2000, POLYM PREPR, V41, P1628
[6]   THE MECHANISMS OF OXIDATIVE-DEGRADATION OF BIOMEDICAL POLYMERS BY FREE-RADICALS [J].
ALI, SAM ;
DOHERTY, PJ ;
WILLIAMS, DF .
JOURNAL OF APPLIED POLYMER SCIENCE, 1994, 51 (08) :1389-1398
[7]  
Amass W, 1998, POLYM INT, V47, P89, DOI 10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO
[8]  
2-F
[9]  
[Anonymous], 2000, 13432 EN
[10]   PREPARATION OF BIODEGRADABLE MICROSPHERES AND MICROCAPSULES .2. POLYACTIDES AND RELATED POLYESTERS [J].
ARSHADY, R .
JOURNAL OF CONTROLLED RELEASE, 1991, 17 (01) :1-21