Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions

被引:100
作者
Botan, Alexandru [1 ]
Favela-Rosales, Fernando [2 ]
Fuchs, Patrick F. J. [3 ]
Javanainen, Matti [4 ]
Kanduc, Matej [5 ]
Kulig, Waldemar [4 ]
Lamber, Antti [6 ]
Loison, Claire [1 ]
Lyubartsev, Alexander [7 ]
Miettinen, Markus S. [5 ]
Monticelli, Luca [8 ]
Maatta, Jukka [9 ]
Ollila, O. H. Samuli [10 ]
Retegan, Marius [11 ]
Rog, Tomasz [4 ]
Santuz, Hubert [12 ,13 ,14 ,15 ]
Tynkkynen, Joona [4 ]
机构
[1] Univ Lyon 1, CNRS, Inst Lumiere Mat, UMR5306, F-69622 Villeurbanne, France
[2] IPN, Ctr Invest & Estudios Avanzados, Dept Fis, Mexico City 07000, DF, Mexico
[3] Univ Paris Diderot, CNRS, Inst Jacques Monod, UMR 7592,Sorbonne Paris Cite, F-75205 Paris, France
[4] Tampere Univ Technol, Dept Phys, FIN-33101 Tampere, Finland
[5] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
[6] Kyoto Univ, Dept Chem Engn, Kyoto 6158510, Japan
[7] Stockholm Univ, Dept Mat & Environm Chem, Div Phys Chem, S-10691 Stockholm, Sweden
[8] IBCP, CNRS, UMR 5086, F-69367 Lyon, France
[9] Aalto Univ, Dept Chem, Aalto 00076, Finland
[10] Aalto Univ, Dept Neurosci & Biomed Engn, Aalto 00076, Finland
[11] Max Planck Inst Chem Energy Convers, D-45470 Mulheim, Germany
[12] INSERM, DSIMB, UMR S 1134, F-75739 Paris, France
[13] Univ Paris Diderot, Sorbonne Paris Cite, UMR S 1134, Paris, France
[14] INTS, F-75739 Paris, France
[15] GR Ex, Lab Excellence, F-75015 Paris, France
基金
欧洲研究理事会; 芬兰科学院;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; ATOM FORCE-FIELD; SOLID-STATE NMR; DEUTERIUM MAGNETIC-RESONANCE; POLAR GROUP CONFORMATION; HEAD GROUP; LIPID-BILAYER; DIPOLAR COUPLINGS; SEGMENTAL ORDER; PHOSPHOLIPID HEADGROUPS;
D O I
10.1021/acs.jpcb.5b04878
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR. experiments in terms of the highly structurally sensitive C-H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P-N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files (https://zenodo.org/collection/user-nmrlipids) has become the most extensive publicly available collection of molecular dynamics simulation trajectories of lipid bilayers.
引用
收藏
页码:15075 / 15088
页数:14
相关论文
共 144 条
[31]   Molecular Conformation and Bilayer Pores in a Nonionic Surfactant Lamellar Phase Studied with 1H-13C Solid-State NMR and Molecular Dynamics Simulations [J].
Ferreira, Tiago M. ;
Topgaard, Daniel ;
Ollila, O. H. Samuli .
LANGMUIR, 2014, 30 (02) :461-469
[32]   Model-free estimation of the effective correlation time for C-H bond reorientation in amphiphilic bilayers: 1H-13C solid-state NMR and MD simulations [J].
Ferreira, Tiago Mendes ;
Ollila, O. H. Samuli ;
Pigliapochi, Roberta ;
Dabkowska, Aleksandra P. ;
Topgaard, Daniel .
JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (04)
[33]   Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H-13C NMR and MD simulation studies [J].
Ferreira, Tiago Mendes ;
Coreta-Gomes, Filipe ;
Ollila, O. H. Samuli ;
Moreno, Maria Joao ;
Vaz, Winchil L. C. ;
Topgaard, Daniel .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (06) :1976-1989
[34]  
Fuchs P. F., 2015, MD SIMULATION TRAJEC, DOI [10.5281/zenodo.14594., DOI 10.5281/ZENODO.14594]
[35]   CONFORMATION AND MOTION OF CHOLINE HEAD GROUP IN BILAYERS OF DIPALMITOYL-3-SN-PHOSPHATIDYLCHOLINE [J].
GALLY, HU ;
NIEDERBERGER, W ;
SEELIG, J .
BIOCHEMISTRY, 1975, 14 (16) :3647-3652
[36]   STRUCTURE OF ESCHERICHIA-COLI MEMBRANES - GLYCEROL AUXOTROPHS AS A TOOL FOR THE ANALYSIS OF THE PHOSPHOLIPID HEADGROUP REGION BY DEUTERIUM MAGNETIC-RESONANCE [J].
GALLY, HU ;
PLUSCHKE, G ;
OVERATH, P ;
SEELIG, J .
BIOCHEMISTRY, 1981, 20 (07) :1826-1831
[37]   THE INTERACTION OF CHOLESTEROL WITH BILAYERS OF PHOSPHATIDYLETHANOLAMINE [J].
GHOSH, R ;
SEELIG, J .
BIOCHIMICA ET BIOPHYSICA ACTA, 1982, 691 (01) :151-160
[38]   Massively collaborative mathematics [J].
Gowers, Timothy ;
Nielsen, Michael .
NATURE, 2009, 461 (7266) :879-881
[39]   Dipolar recoupling in MAS NMR: A probe for segmental order in lipid bilayers [J].
Gross, JD ;
Warschawski, DE ;
Griffin, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (04) :796-802
[40]   Cationic DMPC/DMTAP lipid bilayers: Molecular dynamics study [J].
Gurtovenko, AA ;
Patra, M ;
Karttunen, M ;
Vattulainen, I .
BIOPHYSICAL JOURNAL, 2004, 86 (06) :3461-3472