Investigating the intron recognition mechanism in eukaryotes

被引:26
作者
Collins, L [1 ]
Penny, D [1 ]
机构
[1] Massey Univ, Allan Wilson Ctr Mol Ecol & Evolut, Palmerston North, New Zealand
关键词
intron definition; exon definition; molecular evolution;
D O I
10.1093/molbev/msj084
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent studies indicate that many introns, as well as the complex spliceosomal mechanism to remove them, were present early in eukaryotic evolution. This study examines intron and exon characteristics from annotations of whole genomes to investigate the intron recognition mechanism. Exon definition uses the exon as the unit of recognition, placing length constraints on the exon but not on the intron (allowing it a greater range of lengths). In contrast, intron definition uses the intron itself as the unit of recognition and thus removes constraints on internal exon length forced by the use of an exon definition mechanism. Thus, intron and exon lengths within a genome can reflect the constraints imposed by its splicing. This study shows that it is possible firstly to recover valid intron and exon information from genome annotation. We then compare internal intron and exon information from a range of eukaryotic genomes and investigate possible evolutionary length constraints on introns and exons and how they can impact on the intron recognition mechanism. Results indicate that exon definition-based mechanisms may predominate in vertebrates although the exact system in fish is expected to show some differences with the better characterized system from mammals. We also raise the possibility that the last common ancestor of plants and animals contained some type of exon definition and that this mechanism was replaced in some genes and lineages by intron definition, possibly as a result of intron loss and/or intron shortening.
引用
收藏
页码:901 / 910
页数:10
相关论文
共 76 条
[1]   EXON RECOGNITION IN VERTEBRATE SPLICING [J].
BERGET, SM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (06) :2411-2414
[2]  
BLACK DL, 1995, RNA, V1, P763
[3]   Multiple features contribute to efficient constitutive splicing of an unusually large exon [J].
Bruce, SR ;
Peterson, ML .
NUCLEIC ACIDS RESEARCH, 2001, 29 (11) :2292-2302
[4]   Evolutionary fates and origins of U12-type introns [J].
Burge, CB ;
Padgett, RA ;
Sharp, PA .
MOLECULAR CELL, 1998, 2 (06) :773-785
[5]   Subdivision of large introns in Drosophila by recursive splicing at nonexonic elements [J].
Burnette, JM ;
Miyamoto-Sato, E ;
Schaub, MA ;
Conklin, J ;
Lopez, AJ .
GENETICS, 2005, 170 (02) :661-674
[6]   Selection for short introns in highly expressed genes [J].
Castillo-Davis, CI ;
Mekhedov, SL ;
Hartl, DL ;
Koonin, EV ;
Kondrashov, FA .
NATURE GENETICS, 2002, 31 (04) :415-418
[7]   Nuclear export and retention signals in the RS domain of SR proteins [J].
Cazalla, D ;
Zhu, J ;
Manche, L ;
Huber, E ;
Krainer, AR ;
Cáceres, JF .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (19) :6871-6882
[8]   Human antisense genes have unusually short introns: evidence for selection for rapid transcription [J].
Chen, JJ ;
Sun, M ;
Hurst, LD ;
Carmichael, GG ;
Rowley, JD .
TRENDS IN GENETICS, 2005, 21 (04) :203-207
[9]   Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human [J].
Clark, F ;
Thanaraj, TA .
HUMAN MOLECULAR GENETICS, 2002, 11 (04) :451-464
[10]   Complex spliceosomal organization ancestral to extant eukaryotes [J].
Collins, L ;
Penny, D .
MOLECULAR BIOLOGY AND EVOLUTION, 2005, 22 (04) :1053-1066