A simple model of quantum trajectories

被引:230
作者
Brun, TA [1 ]
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
D O I
10.1119/1.1475328
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Quantum trajectory theory, developed largely in the quantum optics community to describe open quantum systems subjected to continuous monitoring, has applications in many areas of quantum physics. I present a simple model, using two-level quantum systems (q-bits), to illustrate the essential physics of quantum trajectories and how different monitoring schemes correspond to different "unravelings" of a mixed state master equation. I also comment briefly on the relationship of the theory to the consistent histories formalism and to spontaneous collapse models. (C) 2002 American Association of Physics Teachers.
引用
收藏
页码:719 / 737
页数:19
相关论文
共 60 条
[21]   WAVE-FUNCTION QUANTUM STOCHASTIC DIFFERENTIAL-EQUATIONS AND QUANTUM-JUMP SIMULATION METHODS [J].
GARDINER, CW ;
PARKINS, AS ;
ZOLLER, P .
PHYSICAL REVIEW A, 1992, 46 (07) :4363-4381
[22]  
Gell-Mann M., 1990, P 25 INT C HIGH EN P
[23]  
Gell-Mann M, 1990, COMPLEXITY ENTROPY P, VVIII
[24]  
GELLMANN M, 1990, P 3 INT S FDN QUANT
[25]   Bulk spin-resonance quantum computation [J].
Gershenfeld, NA ;
Chuang, IL .
SCIENCE, 1997, 275 (5298) :350-356
[26]   UNIFIED DYNAMICS FOR MICROSCOPIC AND MACROSCOPIC SYSTEMS [J].
GHIRARDI, GC ;
RIMINI, A ;
WEBER, T .
PHYSICAL REVIEW D, 1986, 34 (02) :470-491
[27]   THE QUANTUM STATE DIFFUSION PICTURE OF PHYSICAL PROCESSES [J].
GISIN, N ;
PERCIVAL, IC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (09) :2245-2260
[28]  
GISIN N, 1989, HELV PHYS ACTA, V62, P363
[29]   QUANTUM MEASUREMENTS AND STOCHASTIC-PROCESSES [J].
GISIN, N .
PHYSICAL REVIEW LETTERS, 1984, 52 (19) :1657-1660
[30]   Choice of consistent family, and quantum incompatibility [J].
Griffiths, RB .
PHYSICAL REVIEW A, 1998, 57 (03) :1604-1618