Increased Malonyl Coenzyme A Biosynthesis by Tuning the Escherichia coli Metabolic Network and Its Application to Flavanone Production

被引:157
作者
Fowler, Zachary L. [1 ]
Gikandi, William W. [1 ]
Koffas, Mattheos A. G. [1 ]
机构
[1] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
关键词
IN-SILICO; COMBINATORIAL BIOSYNTHESIS; SYSTEMS; CAPABILITIES; FLAVONOIDS; STRATEGIES; FRAMEWORK; DATABASE; STRAINS; TARGETS;
D O I
10.1128/AEM.00270-09
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Identification of genetic targets able to bring about changes to the metabolite profiles of microorganisms continues to be a challenging task. We have independently developed a cipher of evolutionary design (CiED) to identify genetic perturbations, such as gene deletions and other network modifications, that result in optimal phenotypes for the production of end products, such as recombinant natural products. Coupled to an evolutionary search, our method demonstrates the utility of a purely stoichiometric network to predict improved Escherichia coli genotypes that more effectively channel carbon flux toward malonyl coenzyme A (CoA) and other cofactors in an effort to generate recombinant strains with enhanced flavonoid production capacity. The engineered E. coli strains were constructed first by the targeted deletion of native genes predicted by CiED and then second by incorporating selected overexpressions, including those of genes required for the coexpression of the plant-derived flavanones, acetate assimilation, acetyl-CoA carboxylase, and the biosynthesis of coenzyme A. As a result, the specific flavanone production from our optimally engineered strains was increased by over 660% for naringenin (15 to 100 mg/liter/optical density unit [OD]) and by over 420% for eriodictyol (13 to 55 mg/liter/OD).
引用
收藏
页码:5831 / 5839
页数:9
相关论文
共 40 条
[1]   Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli [J].
Alper, H ;
Jin, YS ;
Moxley, JF ;
Stephanopoulos, G .
METABOLIC ENGINEERING, 2005, 7 (03) :155-164
[2]   Construction of lycopene-overproducing E-coli strains by combining systematic and combinatorial gene knockout targets [J].
Alper, H ;
Miyaoku, K ;
Stephanopoulos, G .
NATURE BIOTECHNOLOGY, 2005, 23 (05) :612-616
[3]   Metabolic engineering of Escherichia coli for 1-butanol production [J].
Atsumi, Shota ;
Cann, Anthony F. ;
Connor, Michael R. ;
Shen, Claire R. ;
Smith, Kevin M. ;
Brynildsen, Mark P. ;
Chou, Katherine J. Y. ;
Hanai, Taizo ;
Liao, James C. .
METABOLIC ENGINEERING, 2008, 10 (06) :305-311
[4]   Metabolic engineering of isoprenoids [J].
Barkovich, R ;
Liao, JC .
METABOLIC ENGINEERING, 2001, 3 (01) :27-39
[5]   OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization [J].
Burgard, AP ;
Pharkya, P ;
Maranas, CD .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (06) :647-657
[6]   Combinatorial mutasynthesis of flavonoid analogues from acrylic acids in microorganisms [J].
Chemler, Joseph A. ;
Yan, Yajun ;
Leonard, Effendi ;
Koffas, Mattheos A. G. .
ORGANIC LETTERS, 2007, 9 (10) :1855-1858
[7]   Metabolic engineering for plant natural product biosynthesis in microbes [J].
Chemler, Joseph A. ;
Koffas, Mattheos A. G. .
CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (06) :597-605
[8]   Metabolic modeling of microbial strains in silico [J].
Covert, MW ;
Schilling, CH ;
Famili, I ;
Edwards, JS ;
Goryanin, II ;
Selkov, E ;
Palsson, BO .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (03) :179-186
[9]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[10]   In silico design and adaptive evolution of Escherichia coli for production of lactic acid [J].
Fong, SS ;
Burgard, AP ;
Herring, CD ;
Knight, EM ;
Blattner, FR ;
Maranas, CD ;
Palsson, BO .
BIOTECHNOLOGY AND BIOENGINEERING, 2005, 91 (05) :643-648