The ground-based InSAR monitoring system at Stromboli volcano: linking changes in displacement rate and intensity of persistent volcanic activity

被引:49
作者
Di Traglia, Federico [1 ,2 ]
Intrieri, Emanuele [1 ]
Nolesini, Teresa [1 ]
Bardi, Federica [1 ]
Del Ventisette, Chiara [1 ]
Ferrigno, Federica [1 ]
Frangioni, Sara [1 ]
Frodella, William [1 ]
Gigli, Giovanni [1 ]
Lotti, Alessia [1 ]
Stefanelli, Carlo Tacconi [1 ]
Tanteri, Luca [1 ]
Leva, Davide [3 ]
Casagli, Nicola [1 ]
机构
[1] Univ Florence, Dept Earth Sci, Florence, Italy
[2] Univ Pisa, Dept Earth Sci, Pisa, Italy
[3] Ellegi Srl LisaLab, Rovello Porro, Como, Italy
关键词
Aeolian Archipelago; GBInSAR; Strombolian activity; Volcano monitoring; Stromboli; 2007; ERUPTION; RADAR INTERFEROMETRY; EXPLOSIVE ERUPTIONS; AEOLIAN ISLANDS; FLANK FAILURE; LAVA FLOW; MAGMA; DYNAMICS; CONDUIT; FIELD;
D O I
10.1007/s00445-013-0786-2
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Stromboli volcano (Aeolian Archipelago, Southern Italy) experienced an increase in its volcanic activity from late December 2012 to March 2013, when it produced several lava overflows, major Strombolian explosions, crater-wall collapses pyroclastic density currents and intense spatter activity. An analysis of the displacement of the NE portion of the summit crater terrace and the unstable NW flank of the volcano (Sciara del Fuoco depression) has been performed with a ground-based interferometric synthetic aperture radar (GBInSAR) by dividing the monitored part of the volcano into five sectors, three in the summit vents region and two in the Sciara del Fuoco. Changes in the displacement rate were observed in sectors 2 and 3. Field and thermal surveys revealed the presence of an alignment of fumaroles confirming the existence of an area of structural discontinuity between sectors 2 and 3. High displacement rates in sector 2 are interpreted to indicate the increase in the magmastatic pressure within the shallow plumbing systems, related to the rise of the magma level within the conduits, while increased displacement rates in sector 3 are connected to the lateral expansion of the shallow plumbing system. The increases and decreases in the displacement rate registered by the GBInSAR system in the upper part of the volcano have been used as a proxy for changes in the pressure conditions in the shallow plumbing system of Stromboli volcano and hence to forecast the occurrence of phases of higher-intensity volcanic activity.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 69 条
[61]  
Rosi M, 2013, J GEOL SOC LONDON ME
[62]  
Spampinato L, 2008, AM GEOPHYS UNION MON, V182, P201
[63]   Volcano surveillance using infrared cameras [J].
Spampinato, Letizia ;
Calvari, Sonia ;
Oppenheimer, Clive ;
Boschi, Enzo .
EARTH-SCIENCE REVIEWS, 2011, 106 (1-2) :63-91
[64]   Linked frequency and intensity of persistent volcanic activity at Stromboli (Italy) [J].
Taddeucci, J. ;
Palladino, D. M. ;
Sottili, G. ;
Bernini, D. ;
Andronico, D. ;
Cristaldi, A. .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (13) :3384-3388
[65]  
Tarchi D, 2008, GEOPHYS MONOGR SER, V182, P359, DOI 10.1029/182GM29
[66]   Subaerial-submarine evidence of structures feeding magma to Stromboli Volcano, Italy, and relations with edifice flank failure and creep [J].
Tibaldi, A. ;
Corazzato, C. ;
Marani, M. ;
Gamberi, F. .
TECTONOPHYSICS, 2009, 469 (1-4) :112-136
[67]   Multiple sector collapses at Stromboli volcano, Italy: how they work [J].
Tibaldi, A .
BULLETIN OF VOLCANOLOGY, 2001, 63 (2-3) :112-125
[68]   The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through numerical simulations [J].
Tinti, S ;
Pagnoni, G ;
Zaniboni, F .
BULLETIN OF VOLCANOLOGY, 2006, 68 (05) :462-479
[69]   Conduit convection, magma mixing, and melt inclusion trends at persistently degassing volcanoes [J].
Witham, Fred .
EARTH AND PLANETARY SCIENCE LETTERS, 2011, 301 (1-2) :345-352