Investigating Satellite Precipitation Uncertainty Over Complex Terrain

被引:36
作者
Bartsotas, N. S. [1 ,2 ]
Anagnostou, E. N. [3 ]
Nikolopoulos, E. I. [3 ]
Kallos, G. [1 ]
机构
[1] Natl & Kapodistrian Univ Athens, Fac Phys, Athens, Greece
[2] Innovat Technol Ctr SA, Athens, Greece
[3] Univ Connecticut, Civil & Environm Engn, Storrs, CT USA
关键词
precipitation; uncertainty; satellite; NWP; complex terrain; heavy precipitation events; TMI RAIN RETRIEVALS; PASSIVE MICROWAVE; WEATHER PREDICTION; MODEL; PRODUCTS; PARAMETERIZATION; IMPROVEMENT; FORECASTS; ALGORITHM; CMORPH;
D O I
10.1029/2017JD027559
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The estimation of heavy precipitation events is a particularly difficult task, especially over high mountainous terrain typically associated with scant availability of in situ observations. Therefore, quantification of precipitation variability in such data-limited regions relies on remote sensing estimates, due to their global coverage and near real-time availability. However, strong underestimation of precipitation associated with low-level orographic enhancement often limits the quantitative use of these data in applications. This study utilizes state-of-the-art numerical weather prediction simulations, toward the reduction of quantitative errors in satellite precipitation estimates and an insight on the nature of detection limitations. Satellite precipitation products based on different retrieval algorithms (Climate Prediction Center morphing method, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System, and Global Satellite Mapping of Precipitation) are evaluated for their performance in a number of storm events over mountainous areas with distinct storm characteristics: Upper Blue Nile in Ethiopia and Alto Adige in NE Italy. High-resolution (1 and 2km) simulations from the Regional Atmospheric Modeling System/Integrated Community Limited Area Modeling System are used to derive adjustments to the magnitude of satellite estimates. Finally, a microphysical investigation is presented for occurrences of erroneous precipitation detection from the satellite instruments. Statistical indexes showcase improvement in numerical weather prediction-adjusted satellite products and microphysical commodities among cases of no detection are discussed.
引用
收藏
页码:5346 / 5359
页数:14
相关论文
共 68 条
[31]   Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation [J].
Kubota, Takuji ;
Shige, Shoichi ;
Hashizurne, Hiroshi ;
Aonashi, Kazumasa ;
Takahashi, Nobuhiro ;
Seto, Shinta ;
Hirose, Masafumi ;
Takayabu, Yukari N. ;
Ushio, Tomoo ;
Nakagawa, Katsuhiro ;
Wanami, Koyuru ;
Kachi, Misako ;
Okamoto, Ken'ichi .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (07) :2259-2275
[32]   Impact of natural aerosols on atmospheric radiation and consequent feedbacks with the meteorological and photochemical state of the atmosphere [J].
Kushta, J. ;
Kallos, G. ;
Astitha, M. ;
Solomos, S. ;
Spyrou, C. ;
Mitsakou, C. ;
Lelieveld, J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (03) :1463-1491
[33]   Use of numerical forecasts for improving TMI rain retrievals over the mountainous area in Korea [J].
Kwon, Eun-Han ;
Sohn, Byung-Ju ;
Chang, Dong-Eon ;
Ahn, Myoung-Hwan ;
Yang, Song .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (07) :1995-2007
[34]   Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom [J].
Lean, Humphrey W. ;
Clark, Peter A. ;
Dixon, Mark ;
Roberts, Nigel M. ;
Fitch, Anna ;
Forbes, Richard ;
Halliwell, Carol .
MONTHLY WEATHER REVIEW, 2008, 136 (09) :3408-3424
[35]   On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation [J].
Mahrooghy, Majid ;
Anantharaj, Valentine G. ;
Younan, Nicolas H. ;
Aanstoos, James ;
Hsu, Kuo-Lin .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2012, 29 (07) :922-932
[36]   Merging weather radar observations with ground-based measurements of rainfall using an adaptive multiquadric surface fitting algorithm [J].
Martens, B. ;
Cabus, P. ;
De Jongh, I. ;
Verhoest, N. E. C. .
JOURNAL OF HYDROLOGY, 2013, 500 :84-96
[37]   New RAMS cloud microphysics parameterization .2. The two-moment scheme [J].
Meyers, MP ;
Walko, RL ;
Harrington, JY ;
Cotton, WR .
ATMOSPHERIC RESEARCH, 1997, 45 (01) :3-39
[38]   Precipitation: Measurement, remote sensing, climatology and modeling [J].
Michaelides, S. ;
Levizzani, V. ;
Anagnostou, E. ;
Bauer, P. ;
Kasparis, T. ;
Lane, J. E. .
ATMOSPHERIC RESEARCH, 2009, 94 (04) :512-533
[39]   Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave [J].
Mlawer, EJ ;
Taubman, SJ ;
Brown, PD ;
Iacono, MJ ;
Clough, SA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D14) :16663-16682
[40]   Using High-Resolution Numerical Weather Forecasts to Improve Remotely Sensed Rainfall Estimates: The Case of the 2013 Colorado Flash Flood [J].
Nikolopoulos, E. I. ;
Bartsotas, N. S. ;
Anagnostou, E. N. ;
Kallos, G. .
JOURNAL OF HYDROMETEOROLOGY, 2015, 16 (04) :1742-1751