Functional implications of the presenilin dimerization -: Reconstitution of γ-secretase activity by assembly of a catalytic site at the dimer interface of two catalytically inactive presenilins

被引:53
作者
Cervantes, S
Saura, CA
Pomares, E
Gonzàlez-Duarte, R
Marfany, G
机构
[1] Univ Barcelona, Fac Biol, Dept Genet, E-08028 Barcelona, Spain
[2] Harvard Univ, Brigham & Womens Hosp, Sch Med, Ctr Neurol Dis, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.M404832200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Presenilins are the catalytic components of gamma-secretase, an intramembrane-cleaving protease whose substrates include beta-amyloid precursor protein (betaAPP) and the Notch receptors. These type I transmembrane proteins undergo two distinct presenilin-dependent cleavages within the transmembrane region, which result in the production of Abeta and APP intracellular domain (from betaAPP) and the Notch intracellular domain signaling peptide. Most cases of familial Alzheimer's disease are caused by presenilin mutations, which are scattered throughout the coding sequence. Although the underlying molecular mechanism is not yet known, the familial Alzheimer's disease mutations produce a shift in the ratio of the long and short forms of the Abeta peptide generated by the gamma-secretase. We and others have previously shown that presenilin homodimerizes and suggested that a presenilin dimer is at the catalytic core of gamma-secretase. Here, we demonstrate that presenilin transmembrane domains contribute to the formation of the dimer. In-frame substitution of the hydrophilic loop 1, located between transmembranes I and II, which modulates the interactions within the N-terminal fragment/N-terminal fragment dimer, abolishes both presenilinase and gamma-secretase activities. In addition, by reconstituting gamma-secretase activity from two catalytically inactive presenilin aspartic mutants, we provide evidence of an active diaspartyl group assembled at the interface between two presenilin monomers. Under our conditions, this catalytic group mediates the generation of APP intracellular domain and Abeta but not Notch intracellular domain, therefore suggesting that specific diaspartyl groups within the presenilin catalytic core of gamma-secretase mediate the cleavage of different substrates.
引用
收藏
页码:36519 / 36529
页数:11
相关论文
共 71 条
[1]   Interaction with telencephalin and the amyloid precursor protein predicts a ring structure for presenilins [J].
Annaert, WG ;
Esselens, C ;
Baert, V ;
Boeve, C ;
Snellings, G ;
Cupers, P ;
Craessaerts, K ;
De Strooper, B .
NEURON, 2001, 32 (04) :579-589
[2]   Familial Alzheimer's disease-linked presenilin 1 variants elevate A beta 1-42/1-40 ratio in vitro and in vivo [J].
Borchelt, DR ;
Thinakaran, G ;
Eckman, CB ;
Lee, MK ;
Davenport, F ;
Ratovitsky, T ;
Prada, CM ;
Kim, G ;
Seekins, S ;
Yager, D ;
Slunt, HH ;
Wang, R ;
Seeger, M ;
Levey, AI ;
Gandy, SE ;
Copeland, NG ;
Jenkins, NA ;
Price, DL ;
Younkin, SG .
NEURON, 1996, 17 (05) :1005-1013
[3]   Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans [J].
Brown, MS ;
Ye, J ;
Rawson, RB ;
Goldstein, JL .
CELL, 2000, 100 (04) :391-398
[4]   A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60 [J].
Cao, XW ;
Südhof, TC .
SCIENCE, 2001, 293 (5527) :115-120
[5]   Nicastrin interacts with γ-secretase complex components via the N-terminal part of its transmembrane domain [J].
Capell, A ;
Kaether, C ;
Edbauer, D ;
Shirotani, K ;
Merkl, S ;
Steiner, H ;
Haass, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (52) :52519-52523
[6]   Presenilin-1 differentially facilitates endoproteolysis of the β-amyloid precursor protein and Notch [J].
Capell, A ;
Steiner, H ;
Romig, H ;
Keck, S ;
Baader, M ;
Grim, MG ;
Baumeister, R ;
Haass, C .
NATURE CELL BIOLOGY, 2000, 2 (04) :205-211
[7]   Homodimerization of presenilin N-terminal fragments is affected by mutations linked to Alzheimer's disease [J].
Cervantes, S ;
González-Duarte, R ;
Marfany, G .
FEBS LETTERS, 2001, 505 (01) :81-86
[8]   Presenilin 1 mutations activate γ42-secretase but reciprocally inhibit ε-secretase cleavage of amyloid precursor protein (APP) and S3-cleavage of Notch [J].
Chen, FS ;
Gu, YJ ;
Hasegawa, H ;
Ruan, XY ;
Arawaka, S ;
Fraser, P ;
Westaway, D ;
Mount, H ;
St George-Hyslop, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (39) :36521-36526
[9]   Nicastrin binds to membrane tethered Notch [J].
Chen, FS ;
Yu, G ;
Arawaka, S ;
Nishimura, M ;
Kawarai, T ;
Yu, H ;
Tandon, A ;
Supala, A ;
Song, YQ ;
Rogaeva, E ;
Milman, P ;
Sato, C ;
Yu, C ;
Janus, C ;
Lee, J ;
Song, LX ;
Zhang, LL ;
Fraser, PE ;
St George-Hyslop, PH .
NATURE CELL BIOLOGY, 2001, 3 (08) :751-754
[10]   Evidence that the 42- and 40-amino acid forms of amyloid beta protein are generated from the beta-amyloid precursor protein by different protease activities [J].
Citron, M ;
Diehl, TS ;
Gordon, G ;
Biere, AL ;
Seubert, P ;
Selkoe, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :13170-13175