Precision characterization of two-qubit Hamiltonians via entanglement mapping

被引:17
作者
Cole, Jared H. [1 ]
Devitt, Simon J. [1 ]
Hollenberg, Lloyd C. L. [1 ]
机构
[1] Univ Melbourne, Sch Phys, Ctr Quantum Comp Technol, Melbourne, Vic 3010, Australia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 47期
关键词
D O I
10.1088/0305-4470/39/47/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate a method to characterize the general Heisenberg Hamiltonian with non-uniform couplings by mapping the entanglement it generates as a function of time. Identification of the Hamiltonian in this way is possible as the coefficients of each operator control the oscillation frequencies of the entanglement function. The number of measurements required to achieve a given precision in the Hamiltonian parameters is determined and an efficient measurement strategy designed. We derive the relationship between the number of measurements, the resulting precision and the ultimate discrete error probability generated by a systematic mis-characterization. This has important implications when implementing two-qubit gates for fault-tolerant quantum computation.
引用
收藏
页码:14649 / 14658
页数:10
相关论文
共 41 条
[1]   Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit [J].
Alicki, Robert ;
Lidar, Daniel A. ;
Zanardi, Paolo .
PHYSICAL REVIEW A, 2006, 73 (05)
[2]   Nanoscale solid-state quantum computing [J].
Ardavan, A ;
Austwick, M ;
Benjamin, SC ;
Briggs, GAD ;
Dennis, TJS ;
Ferguson, A ;
Hasko, DG ;
Kanai, M ;
Khlobystov, AN ;
Lovett, BW ;
Morley, GW ;
Oliver, RA ;
Pettifor, DG ;
Porfyrakis, K ;
Reina, JH ;
Rice, JH ;
Smith, JD ;
Taylor, RA ;
Williams, DA ;
Adelmann, C ;
Mariette, H ;
Hamers, RJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 361 (1808) :1473-1485
[3]   Quantum computing with an always-on Heisenberg interaction [J].
Benjamin, SC ;
Bose, S .
PHYSICAL REVIEW LETTERS, 2003, 90 (24) :4
[4]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[5]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
[6]   Identifying a two-state Hamiltonian in the presence of decoherence [J].
Cole, Jared H. ;
Greentree, Andrew D. ;
Oi, Daniel K. L. ;
Schirmer, Sonia G. ;
Wellard, Cameron J. ;
Hollenberg, Lloyd C. L. .
PHYSICAL REVIEW A, 2006, 73 (06)
[7]   Identifying an experimental two-state Hamiltonian to arbitrary accuracy [J].
Cole, JH ;
Schirmer, SG ;
Greentree, AD ;
Wellard, CJ ;
Oi, DKL ;
Hollenberg, LCL .
PHYSICAL REVIEW A, 2005, 71 (06)
[8]   Silicon quantum computation based on magnetic dipolar coupling [J].
de Sousa, R ;
Delgado, JD ;
Das Sarma, S .
PHYSICAL REVIEW A, 2004, 70 (05) :052304-1
[9]   Scheme for direct measurement of a general two-qubit Hamiltonian [J].
Devitt, Simon J. ;
Cole, Jared H. ;
Hollenberg, Lloyd C. L. .
PHYSICAL REVIEW A, 2006, 73 (05)
[10]  
DiVincenzo DP, 2000, FORTSCHR PHYS, V48, P771, DOI 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO