Drug resistance in yeasts - an emerging scenario

被引:62
作者
Prasad, R [1 ]
Panwar, SL [1 ]
Smriti [1 ]
机构
[1] Jawaharlal Nehru Univ, Sch Life Sci, Membrane Biol Lab, New Delhi 110067, India
来源
ADVANCES IN MICROBIAL PHYSIOLOGY, VOL 46 | 2002年 / 46卷
关键词
D O I
10.1016/S0065-2911(02)46004-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In view of the increasing threat posed by fungal infections in immunocompromised patients and due to the non-availability of effective treatments, it has become imperative to find novel antifungals and vigorously search for new drug targets. Fungal pathogens acquire resistance to drugs (antifungals), a well-established phenomenon termed multidrug resistance (MDR), which hampers effective treatment strategies. The MDR phenomenon is spread throughout the evolutionary scale. Accordingly, a host of responsible genes have been identified in the genetically tractable budding yeast Saccharomyces cerevisiae, as well as in a pathogenic yeast Candida albicans. Studies so far suggest that, while antifungal resistance is the culmination of multiple factors, there may be a unifying mechanism of drug resistance in these pathogens. ABC (ATP binding cassette) and MFS (major facilitator superfamily) drug transporters belonging to two different superfamilies, are the most prominent contributors to MDR in yeasts. Considering the abundance of the drug transporters and their wider specificity, it is believed that these drug transporters may not exclusively export drugs in fungi. It has become apparent that the drug transporters of the ABC superfamily of S. cerevisiae and C. albicans are multifunctional proteins, which mediate important physiological functions. This review summarizes current research on the molecular mechanisms underlying drug resistance, the emerging regulatory circuits of MDR genes, and the physiological relevance of drug transporters.
引用
收藏
页码:155 / 201
页数:47
相关论文
共 232 条
[1]   The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans [J].
Alarco, AM ;
Raymond, M .
JOURNAL OF BACTERIOLOGY, 1999, 181 (03) :700-708
[2]   AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily [J].
Alarco, AM ;
Balan, I ;
Talibi, D ;
Mainville, N ;
Raymond, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (31) :19304-19313
[3]   Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance [J].
Albertson, GD ;
Niimi, M ;
Cannon, RD ;
Jenkinson, HF .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1996, 40 (12) :2835-2841
[4]   Biochemical, cellular, and pharmacological aspects of the multidrug transporter [J].
Ambudkar, SV ;
Dey, S ;
Hrycyna, CA ;
Ramachandra, M ;
Pastan, I ;
Gottesman, MM .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1999, 39 :361-398
[5]   PARTIAL-PURIFICATION AND RECONSTITUTION OF THE HUMAN MULTIDRUG-RESISTANCE PUMP - CHARACTERIZATION OF THE DRUG-STIMULATABLE ATP HYDROLYSIS [J].
AMBUDKAR, SV ;
LELONG, IH ;
ZHANG, JP ;
CARDARELLI, CO ;
GOTTESMAN, MM ;
PASTAN, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (18) :8472-8476
[6]  
Ambudkar SV, 1998, METHOD ENZYMOL, V292, P504
[7]   NUCLEOSIDE TRIPHOSPHATES ARE REQUIRED TO OPEN THE CFTR CHLORIDE CHANNEL [J].
ANDERSON, MP ;
BERGER, HA ;
RICH, DP ;
GREGORY, RJ ;
SMITH, AE ;
WELSH, MJ .
CELL, 1991, 67 (04) :775-784
[8]   The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production [J].
Andrade, AC ;
Van Nistelrooy, JGM ;
Peery, RB ;
Skatrud, PL ;
De Waard, MA .
MOLECULAR AND GENERAL GENETICS, 2000, 263 (06) :966-977
[9]   The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds [J].
Andrade, AC ;
Del Sorbo, G ;
Van Nistelrooy, JGM ;
De Waard, MA .
MICROBIOLOGY-SGM, 2000, 146 :1987-1997
[10]   Expression of atrC -: encoding a novel member of the ATP binding cassette transporter family in Aspergillus nidulans -: is sensitive to cycloheximide [J].
Angermayr, K ;
Parson, W ;
Stöffler, G ;
Haas, H .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 1999, 1453 (02) :304-310