Efficient backward elimination algorithm for sparse signal representation using overcomplete dictionaries

被引:6
作者
Cotter, SF [1 ]
Kreutz-Delgado, K [1 ]
Rao, BD [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
backward elimination algorithm; overcomplete dictionary; sparse representation; subset selection;
D O I
10.1109/LSP.2002.1009004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A sparse representation of a signal, i.e., a representation using a small number of vectors chosen from a dictionary of vectors, is highly desirable in many applications. Here, we extend the backward elimination sparse representation algorithm presented in [1] to allow for an overcomplete dictionary and develop recursions for its implementation. In the overcomplete case, the representation error cannot be used as a general criterion for elimination of a dictionary vector and other criteria must be considered. Simulation on a test-case dictionary shows that the performance of the proposed algorithm can improve upon that of forward selection methods.
引用
收藏
页码:145 / 147
页数:3
相关论文
共 9 条
[1]  
Campbell S.L., 1991, Generalized Inverses of Linear Transformations
[2]   Backward sequential elimination for sparse vector subset selection [J].
Cotter, SF ;
Kreutz-Delgado, K ;
Rao, BD .
SIGNAL PROCESSING, 2001, 81 (09) :1849-1864
[3]   Forward sequential algorithms for best basis selection [J].
Cotter, SF ;
Adler, J ;
Rao, BD ;
Kreutz-Delgado, K .
IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 1999, 146 (05) :235-244
[4]   On the optimality of the backward greedy algorithm for the subset selection problem [J].
Couvreur, C ;
Bresler, Y .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (03) :797-808
[5]  
Golub G. H., 2013, Matrix Computations
[6]   SPARSE APPROXIMATE SOLUTIONS TO LINEAR-SYSTEMS [J].
NATARAJAN, BK .
SIAM JOURNAL ON COMPUTING, 1995, 24 (02) :227-234
[7]  
Rao BD, 1998, INT CONF ACOUST SPEE, P1861, DOI 10.1109/ICASSP.1998.681826
[8]   An affine scaling methodology for best basis selection [J].
Rao, BD ;
Kreutz-Delgado, K .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (01) :187-200
[9]   An efficient implementation of the backward greedy algorithm for sparse signal reconstruction [J].
Reeves, SJ .
IEEE SIGNAL PROCESSING LETTERS, 1999, 6 (10) :266-268