Semiclassical form factor for chaotic systems with spin 1/2

被引:35
作者
Bolte, J
Keppeler, S
机构
[1] Univ Ulm, Theoret Phys Abt, D-89069 Ulm, Germany
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[3] Hewlett Packard Labs, BRIMS, Bristol BS34 8QZ, Avon, England
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 50期
关键词
D O I
10.1088/0305-4470/32/50/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the properties of the two-point spectral form factor for classically chaotic systems with spin 1/2 in the semiclassical limit, with a suitable semiclassical trace formula as our principal tool. To this end we introduce a regularized form factor and discuss the limit in which the so-called diagonal approximation can be recovered. The incorporation of the spin contribution to the trace formula requires an appropriate variant of the equidistribution principle of long periodic orbits as well as the notion of a skew product of the classical translational and spin dynamics. Provided this skew product is mixing, we show that generically the diagonal approximation of the form factor coincides with the respective predictions from random matrix theory.
引用
收藏
页码:8863 / 8880
页数:18
相关论文
共 29 条
[11]   EXTREME LEVEL REPULSION FOR CHAOTIC QUANTUM HAMILTONIANS [J].
CAURIER, E ;
GRAMMATICOS, B .
PHYSICS LETTERS A, 1989, 136 (7-8) :387-390
[12]  
Cornfield I P., 1982, Ergodic Theory
[13]   SPECTRUM OF POSITIVE ELLIPTIC OPERATORS AND PERIODIC BICHARACTERISTICS [J].
DUISTERMAAT, JJ ;
GUILLEMIN, VW .
INVENTIONES MATHEMATICAE, 1975, 29 (01) :39-79
[14]   PERIODIC ORBITS AND CLASSICAL QUANTIZATION CONDITIONS [J].
GUTZWILL.MC .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (03) :343-&
[15]  
Haake F., 1991, QUANTUM SIGNATURES C
[16]   PERIODIC-ORBITS AND A CORRELATION-FUNCTION FOR THE SEMICLASSICAL DENSITY OF STATES [J].
HANNAY, JH ;
DEALMEIDA, AMO .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18) :3429-3440
[17]  
HASEGAWA H, 1989, PROG THEOR PHYS SUPP, P198, DOI 10.1143/PTPS.98.198
[18]   The reflection of electrons at a potential jump to the relative dynamics of Dirac [J].
Klein, O. .
ZEITSCHRIFT FUR PHYSIK, 1929, 53 (3-4) :157-165
[19]  
Kramers HA, 1930, P K AKAD WET-AMSTERD, V33, P959
[20]   Spectral form factors of rectangle billiards [J].
Marklof, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 199 (01) :169-202