Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell

被引:210
作者
Frusteri, F
Freni, S
Chiodo, V
Spadaro, L
Di Blasi, O
Bonura, G
Cavallaro, S
机构
[1] ITAE, Ist CNR, I-98126 Messina, Italy
[2] Univ Messina, Dipartimento Chim Ind & Ingn Mat, I-98166 Messina, Italy
关键词
bio-ethanol; steam reforming; Ni catalyst; alkali doping; H-2; production;
D O I
10.1016/j.apcata.2004.03.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effects of alkali addition (e.g. Li, Na, K) on the behavior of Ni/MgO catalyst in the bio-ethanol steam reforming have been investigated. Li and Na promote the NiO reduction but negatively affect the dispersion of the Ni/MgO catalyst, whereas K does not significantly affect either morphology or dispersion. Li and K enhance the stability of Ni/MgO mainly by depressing Ni sintering. Coke formation on bare and doped catalysts occurs but with orders of magnitude lower rates than those claimed for Ni supported on an acidic carrier. The peculiar influence of the mean Ni particle size on the turnover frequency (TOF s(-1)) has been explained by invoking a structure-sensitive character of the ethanol dehydrogenation reaction considered as being the first step of the reaction which evolves according to the following mechanism: ethanol hydrogenation --> acetaldehyde decomposition --> steam reforming of methane and water gas shift reactions. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 20 条
[1]   Alkali promotion of Ni/MgO catalysts [J].
Arena, F ;
Frusteri, F ;
Parmaliana, A .
APPLIED CATALYSIS A-GENERAL, 1999, 187 (01) :127-140
[2]   Catalyst performance of Rh/CeO2/SiO2 in the pyrogasification of biomass [J].
Asadullah, M ;
Miyazawa, T ;
Ito, S ;
Kunimori, K ;
Tomishige, K .
ENERGY & FUELS, 2003, 17 (04) :842-849
[3]   Bio-ethanol catalytic steam reforming over supported metal catalysts [J].
Auprêtre, F ;
Descorme, C ;
Duprez, D .
CATALYSIS COMMUNICATIONS, 2002, 3 (06) :263-267
[4]   Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol:: H2 production for MCFC [J].
Cavallaro, S ;
Chiodo, V ;
Freni, S ;
Mondello, N ;
Frusteri, F .
APPLIED CATALYSIS A-GENERAL, 2003, 249 (01) :119-128
[5]  
ELEY DD, ADV CATALYSIS, V36, P117
[6]  
Ertl G., 1997, HDB HETEROGENEOUS CA, V5, P2159
[7]   Production of hydrogen for fuel cells by reformation of biomass-derived ethanol [J].
Fatsikostas, AN ;
Kondarides, DI ;
Verykios, XE .
CATALYSIS TODAY, 2002, 75 (1-4) :145-155
[8]   Steam reforming of ethanol on Ni/MgO catalysts:: H2 production for MCFC [J].
Freni, S ;
Cavallaro, S ;
Mondello, N ;
Spadaro, L ;
Frusteri, F .
JOURNAL OF POWER SOURCES, 2002, 108 (1-2) :53-57
[9]   Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts [J].
Freni, S ;
Cavallaro, S ;
Mondello, N ;
Spadaro, L ;
Frusteri, F .
CATALYSIS COMMUNICATIONS, 2003, 4 (06) :259-268
[10]   TEM evidence for factors affecting the genesis of carbon species on bare and K-promoted Ni/MgO catalysts during the dry reforming of methane [J].
Frusteri, F ;
Spadaro, L ;
Arena, F ;
Chuvilin, A .
CARBON, 2002, 40 (07) :1063-1070