Reaction Path Optimization with Holonomic Constraints and Kinetic Energy Potentials

被引:33
作者
Brokaw, Jason B. [2 ]
Haas, Kevin R. [1 ]
Chu, Jhih-Wei [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
ELASTIC BAND METHOD; BETA-D-GLUCOPYRANOSE; ALPHA-D-GLUCOPYRANOSE; MOLECULAR-DYNAMICS; RELATIVE STABILITY; FINITE-TEMPERATURE; PRION PROTEIN; SADDLE-POINTS; STRING METHOD; SYSTEMS;
D O I
10.1021/ct9001398
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two methods are developed to enhance the stability, efficiency, and robustness of reaction path optimization using a chain of replicas. First, distances between replicas are kept equal during path optimization via holonomic constraints. Finding a reaction path is, thus, transformed into a constrained optimization problem. This approach avoids force projections for finding minimum energy paths (MEPs), and fast-converging schemes such as quasi-Newton methods can be readily applied. Second, we define a new objective function - the total Hamiltonian - for reaction path optimization, by combining the kinetic energy potential of each replica with its potential energy function. Minimizing the total Hamiltonian of a chain determines a minimum Hamiltonian path (MHP). If the distances between replicas are kept equal and a consistent force constant is used, then the kinetic energy potentials of all replicas have the same value. The MHP in this case is the most probable isokinetic path. Our results indicate that low-temperature kinetic energy potentials (<5 K) can be used to prevent the development of kinks during path optimization and can significantly reduce the required steps of minimization by 2-3 times without causing noticeable differences between a MHIP and MEP. These methods are applied to three test cases, the C-7eq-to-C-ax isomerization of an alanine dipeptide, the C-4(10)-to-C-1(4) transition of an CL-D-glucopyranose, and the helix-to-sheet transition of a GNNQQNY heptapeptide. By applying the methods developed in this work, convergence of reaction path optimization can be achieved for these complex transitions, involving full atomic details and a large number of replicas (> 100). For the case of helix-to-sheet transition, we identify pathways whose energy barriers are consistent with experimental measurements. Further, we develop a method based on the work energy theorem to quantify the accuracy of reaction paths and to determine whether the atoms used to define a path are enough to provide quantitative estimation of energy barriers.
引用
收藏
页码:2050 / 2061
页数:12
相关论文
共 52 条
[1]  
Allen M.P., 1987, COMPUTER SIMULATION
[2]  
[Anonymous], J CHEM PHYS
[3]  
[Anonymous], 1980, European Journal of Biochemistry, V111, P295, DOI DOI 10.1111/J1432-1033.1980.TB04941.X
[4]   B3LYP/6-311++G** study of α- and β-D-glucopyranose and 1,5-anhydro-D-glucitol:: 4C1 and 1C4 chairs, 3,OB and B3,0 boats, and skew-boat conformations [J].
Appell, M ;
Strati, G ;
Willett, JL ;
Momany, FA .
CARBOHYDRATE RESEARCH, 2004, 339 (03) :537-551
[5]   An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid [J].
Balbirnie, M ;
Grothe, R ;
Eisenberg, DS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2375-2380
[6]  
Barrows SE, 1998, J COMPUT CHEM, V19, P1111, DOI 10.1002/(SICI)1096-987X(19980730)19:10<1111::AID-JCC1>3.0.CO
[7]  
2-P
[8]   RELATIVE STABILITY OF ALTERNATIVE CHAIR FORMS AND HYDROXYMETHYL CONFORMATIONS OF BETA-D-GLUCOPYRANOSE [J].
BARROWS, SE ;
DULLES, FJ ;
CRAMER, CJ ;
FRENCH, AD ;
TRUHLAR, DG .
CARBOHYDRATE RESEARCH, 1995, 276 (02) :219-251
[9]   Folding of prion protein to its native α-helical conformation is under kinetic control [J].
Baskakov, IV ;
Legname, G ;
Prusiner, SB ;
Cohen, FE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) :19687-19690
[10]   The conformational free energy landscape of β-D-glucopyranose. implications for substrate preactivation in β-glucoside hydrolases [J].
Biarnes, Xevi ;
Ardevol, Albert ;
Planas, Antoni ;
Rovira, Carme ;
Laio, Alessandro ;
Parrinello, Michele .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (35) :10686-10693