Stability of a vortex in a small trapped Bose-Einstein condensate

被引:43
作者
Linn, M [1 ]
Fetter, AL
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Univ Bonn, Inst Phys, D-53115 Bonn, Germany
来源
PHYSICAL REVIEW A | 1999年 / 60卷 / 06期
关键词
D O I
10.1103/PhysRevA.60.4910
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A second-order expansion of the Gross-Pitaevskii equation in the interaction parameter determines the thermodynamic critical angular velocity Omega(c) for the creation of a vortex in a small axisymmetric condensate. Similarly, a second-order expansion of the Bogoliubov equations determines the (negative) frequency omega(a) of the anomalous mode. Although Omega(c) = -omega(a) through first order, the second-order contributions ensure that the absolute value \omega(a)\ is always smaller than the critical angular velocity Omega(c). With increasing external rotation Omega, the dynamical instability of the condensate with a vortex disappears at Omega* = \omega(a)\, whereas the vortex state becomes energetically stable at the larger value Omega(c). Both second-order contributions depend explicitly on the axial anisotropy of the trap. The appearance of a local minimum of the free energy for a vortex at the center determines the metastable angular velocity Omega(m). A variational calculation yields Omega(m) = \omega(a)\ to first order (hence Omega(m) also coincides with the critical angular velocity Omega(c) to this order). Qualitatively, the scenario for the onset of stability in the weak-coupling limit is the same as that found in the strong-coupling (Thomas-Fermi) limit. [S1050-2947(99)08512-1].
引用
收藏
页码:4910 / 4917
页数:8
相关论文
共 23 条
[1]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[2]   Ground-state properties of magnetically trapped Bose-condensed rubidium gas [J].
Baym, G ;
Pethick, CJ .
PHYSICAL REVIEW LETTERS, 1996, 76 (01) :6-9
[3]  
Bogolyubov N. N., 1947, J. Phys. (USSR), V11, P23
[4]   Bose-Einstein condensation of lithium: Observation of limited condensate number [J].
Bradley, CC ;
Sackett, CA ;
Hulet, RG .
PHYSICAL REVIEW LETTERS, 1997, 78 (06) :985-989
[5]   Predicted signatures of rotating Bose-Einstein condensates [J].
Butts, DA ;
Rokhsar, DS .
NATURE, 1999, 397 (6717) :327-329
[6]  
COHENTANNOUDJI C, 1977, QUANTUM MECHANICS, V1, P500
[7]   Bosons in anisotropic traps: Ground state and vortices [J].
Dalfovo, F ;
Stringari, S .
PHYSICAL REVIEW A, 1996, 53 (04) :2477-2485
[8]   BOSE-EINSTEIN CONDENSATION IN A GAS OF SODIUM ATOMS [J].
DAVIS, KB ;
MEWES, MO ;
ANDREWS, MR ;
VANDRUTEN, NJ ;
DURFEE, DS ;
KURN, DM ;
KETTERLE, W .
PHYSICAL REVIEW LETTERS, 1995, 75 (22) :3969-3973
[9]   Excitation spectroscopy of vortex states in dilute Bose-Einstein condensed gases [J].
Dodd, RJ ;
Burnett, K ;
Edwards, M ;
Clark, CW .
PHYSICAL REVIEW A, 1997, 56 (01) :587-590
[10]   Vortex stability of interacting Bose-Einstein condensates confined in anisotropic harmonic traps [J].
Feder, DL ;
Clark, CW ;
Schneider, BI .
PHYSICAL REVIEW LETTERS, 1999, 82 (25) :4956-4959