Stability of a vortex in a small trapped Bose-Einstein condensate

被引:43
作者
Linn, M [1 ]
Fetter, AL
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Univ Bonn, Inst Phys, D-53115 Bonn, Germany
来源
PHYSICAL REVIEW A | 1999年 / 60卷 / 06期
关键词
D O I
10.1103/PhysRevA.60.4910
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A second-order expansion of the Gross-Pitaevskii equation in the interaction parameter determines the thermodynamic critical angular velocity Omega(c) for the creation of a vortex in a small axisymmetric condensate. Similarly, a second-order expansion of the Bogoliubov equations determines the (negative) frequency omega(a) of the anomalous mode. Although Omega(c) = -omega(a) through first order, the second-order contributions ensure that the absolute value \omega(a)\ is always smaller than the critical angular velocity Omega(c). With increasing external rotation Omega, the dynamical instability of the condensate with a vortex disappears at Omega* = \omega(a)\, whereas the vortex state becomes energetically stable at the larger value Omega(c). Both second-order contributions depend explicitly on the axial anisotropy of the trap. The appearance of a local minimum of the free energy for a vortex at the center determines the metastable angular velocity Omega(m). A variational calculation yields Omega(m) = \omega(a)\ to first order (hence Omega(m) also coincides with the critical angular velocity Omega(c) to this order). Qualitatively, the scenario for the onset of stability in the weak-coupling limit is the same as that found in the strong-coupling (Thomas-Fermi) limit. [S1050-2947(99)08512-1].
引用
收藏
页码:4910 / 4917
页数:8
相关论文
共 23 条
[21]   Normal modes of a vortex in a trapped Bose-Einstein condensate [J].
Svidzinsky, AA ;
Fetter, AL .
PHYSICAL REVIEW A, 1998, 58 (04) :3168-3179
[22]  
SVIDZINSKY AA, CONDMAT9811348
[23]  
[No title captured]