Rapid and selective oxygen-regulated protein tyrosine denitration and nitration in mitochondria

被引:150
作者
Koeck, T
Fu, XM
Hazen, SL
Crabb, JW
Stuehr, DJ
Aulak, KS
机构
[1] Cleveland Clin Fdn, Dept Immunol, Lerner Res Inst, Cleveland, OH 44195 USA
[2] Cleveland Clin Fdn, Dept Cell Biol, Lerner Res Inst, Cleveland, OH 44195 USA
[3] Cleveland Clin Fdn, Dept Cell Biol, Cole Eye Inst, Cleveland, OH 44195 USA
关键词
D O I
10.1074/jbc.M401586200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Growing evidence connects a cumulative formation of 3-nitrotyrosyl adducts in proteins as a marker for oxidative damage with the pathogenesis of various diseases and pathological conditions associated with oxidative stress. A physiological signaling role for protein nitration has also been suggested. Controlled "denitration" would be essential for such a contribution of protein nitration to cellular regulatory processes. Thus, we further characterized such a potentially controlled, reversible tyrosine nitration that occurs in respiring mitochondria during oxygen deprivation followed by reoxygenation, which we recently discovered. Mitochondria constitute cellular centers of protein nitration and are leading candidates for a "nitrative" regulation. Mitochondria are capable of completely eliminating 3-nitrotyrosyl adducts during 20 min of hypoxia-anoxia and undergoing a selective partial reduction after only 5 min. This denitration is independent of protein degradation but depends on the oxygen tension. Reoxygenation re-establishes protein tyrosine nitration patterns that are almost identical to the pattern that occurs before hypoxia- anoxia, with nitration levels that depend on the duration of hypoxia- anoxia. The identified mitochondrial targets of this process are critical for energy and antioxidant homeostasis and, therefore, cell and tissue viability. This cycle of protein nitration and denitration shows analogies to protein phosphorylation, and we demonstrate that the cycle meets most of the criteria for a cellular signaling mechanism. Taken together, our data reveal that protein tyrosine nitration in mitochondria can be controlled, is target-selective and rapid, and is dynamic enough to serve as a nitrative regulatory signaling process that likely affects cellular energy, redox homeostasis, and pathological conditions when these features become disturbed.
引用
收藏
页码:27257 / 27262
页数:6
相关论文
共 51 条
[1]   Proteomic method identifies proteins nitrated in vivo during inflammatory challenge [J].
Aulak, KS ;
Miyagi, M ;
Yan, L ;
West, KA ;
Massillon, D ;
Crabb, JW ;
Stuehr, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (21) :12056-12061
[2]   Dynamics of protein nitration in cells and mitochondria [J].
Aulak, KS ;
Koeck, T ;
Crabb, JW ;
Stuehr, DJ .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2004, 286 (01) :H30-H38
[3]   Requirements for heme and thiols for the nonenzymatic modification of nitrotyrosine [J].
Balabanli, B ;
Kamisaki, Y ;
Martin, E ;
Murad, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (23) :13136-13141
[4]   Generation of superoxide in cardiomyocytes during ischemia before reperfusion [J].
Becker, LB ;
Vanden Hoek, TL ;
Shao, ZH ;
Li, CQ ;
Schumacker, PT .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1999, 277 (06) :H2240-H2246
[5]   Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism [J].
Bota, DA ;
Davies, KJA .
NATURE CELL BIOLOGY, 2002, 4 (09) :674-680
[6]   Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress [J].
Bota, DA ;
Van Remmen, H ;
Davies, KJA .
FEBS LETTERS, 2002, 532 (1-2) :103-106
[7]   A tale of two controversies -: Defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species [J].
Brennan, ML ;
Wu, WJ ;
Fu, XM ;
Shen, ZZ ;
Song, W ;
Frost, H ;
Vadseth, C ;
Narine, L ;
Lenkiewicz, E ;
Borchers, MT ;
Lusis, AJ ;
Lee, JJ ;
Lee, NA ;
Abu-Soud, HM ;
Ischiropoulos, H ;
Hazen, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (20) :17415-17427
[8]   Subcellular localization of proteasomes and their regulatory complexes in mammalian cells [J].
Brooks, P ;
Fuertes, G ;
Murray, RZ ;
Bose, S ;
Knecht, E ;
Rechsteiner, MC ;
Hendil, KB ;
Tanaka, K ;
Dyson, J ;
Rivett, AJ .
BIOCHEMICAL JOURNAL, 2000, 346 :155-161
[9]   OXIDATION OF CITRATE ISOCITRATE + CIS-ACONITATE BY ISOLATED MITOCHONDRIA [J].
CHAPPELL, JB .
BIOCHEMICAL JOURNAL, 1964, 90 (02) :225-&
[10]   Mitochondrial targets of oxidative stress during renal ischemia/reperfusion [J].
Cruthirds, DL ;
Novak, L ;
Akhi, KM ;
Sanders, PW ;
Thompson, JA ;
MacMillan-Crow, LA .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2003, 412 (01) :27-33