Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging

被引:534
作者
Lin, Long [1 ]
Xie, Yannan [1 ]
Wang, Sihong [1 ]
Wu, Wenzhuo [1 ]
Niu, Simiao [1 ]
Wen, Xiaonan [1 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing, Peoples R China
关键词
active sensor; triboelectric effect; nanogenerator; pressure mapping; self-powered system; ARTIFICIAL SKIN; ELECTRONIC SKIN; LARGE-AREA; NANOGENERATORS; TRANSPARENT; TRANSISTORS; ENERGY; MATRIX; NANOWIRES; GENERATOR;
D O I
10.1021/nn4037514
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report an innovative, large-area, and self-powered pressure mapping approach based on the triboelectric effect, which converts the mechanical stimuli into electrical output signals. The working mechanism of the triboelectric active sensor (TEAS) was theoretically studied by both analytical method and numerical calculation to gain an intuitive understanding of the relationship between the applied pressure and the responsive signals. Relying on the unique pressure response characteristics of the open-circuit voltage and short-circuit current, we realize both static and dynamic pressure sensing on a single device for the first time. A series of comprehensive investigations were carried out to characterize the performance of the TEAS, and high sensitivity (0.31 kPa(-1)), ultrafast response time (<5 ms), long-term stability (30 000 cycles), as well as low detection limit (21 Pa) were achieved. The pressure measurement range of the TEAS was adjustable, which means both gentle pressure detection and large-scale pressure sensing were enabled. Through integrating multiple TEAS units into a sensor array, the as-fabricated TEAS matrix was capable of monitoring and mapping the local pressure distribution applied on the device with distinguishable spatial profiles. This work presents a technique for tactile imaging and progress toward practical applications of nanogenerators, providing potential solutions for accomplishment of artificial skin, human-electronic interfacing, and self-powered systems.
引用
收藏
页码:8266 / 8274
页数:9
相关论文
共 30 条
[1]   A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties [J].
Diaz, AF ;
Felix-Navarro, RM .
JOURNAL OF ELECTROSTATICS, 2004, 62 (04) :277-290
[2]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[3]   Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films [J].
Fan, Feng-Ru ;
Lin, Long ;
Zhu, Guang ;
Wu, Wenzhuo ;
Zhang, Rui ;
Wang, Zhong Lin .
NANO LETTERS, 2012, 12 (06) :3109-3114
[4]   Electrostatic self-assembly of macroscopic crystals using contact electrification [J].
Grzybowski, BA ;
Winkleman, A ;
Wiles, JA ;
Brumer, Y ;
Whitesides, GM .
NATURE MATERIALS, 2003, 2 (04) :241-245
[5]   Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics [J].
Javey, Ali ;
Nam, SungWoo ;
Friedman, Robin S. ;
Yan, Hao ;
Lieber, Charles M. .
NANO LETTERS, 2007, 7 (03) :773-777
[6]   Stretchable and foldable silicon integrated circuits [J].
Kim, Dae-Hyeong ;
Ahn, Jong-Hyun ;
Choi, Won Mook ;
Kim, Hoon-Sik ;
Kim, Tae-Ho ;
Song, Jizhou ;
Huang, Yonggang Y. ;
Liu, Zhuangjian ;
Lu, Chun ;
Rogers, John A. .
SCIENCE, 2008, 320 (5875) :507-511
[7]   Epidermal Electronics [J].
Kim, Dae-Hyeong ;
Lu, Nanshu ;
Ma, Rui ;
Kim, Yun-Soung ;
Kim, Rak-Hwan ;
Wang, Shuodao ;
Wu, Jian ;
Won, Sang Min ;
Tao, Hu ;
Islam, Ahmad ;
Yu, Ki Jun ;
Kim, Tae-il ;
Chowdhury, Raeed ;
Ying, Ming ;
Xu, Lizhi ;
Li, Ming ;
Chung, Hyun-Joong ;
Keum, Hohyun ;
McCormick, Martin ;
Liu, Ping ;
Zhang, Yong-Wei ;
Omenetto, Fiorenzo G. ;
Huang, Yonggang ;
Coleman, Todd ;
Rogers, John A. .
SCIENCE, 2011, 333 (6044) :838-843
[8]   Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications [J].
Li, Mo ;
Tang, H. X. ;
Roukes, M. L. .
NATURE NANOTECHNOLOGY, 2007, 2 (02) :114-120
[9]   Segmentally Structured Disk Triboelectric Nanogenerator for Harvesting Rotational Mechanical Energy [J].
Lin, Long ;
Wang, Sihong ;
Xie, Yannan ;
Jing, Qingshen ;
Niu, Simiao ;
Hu, Youfan ;
Wang, Zhong Lin .
NANO LETTERS, 2013, 13 (06) :2916-2923
[10]   An elastic-spring-substrated nanogenerator as an active sensor for self-powered balance [J].
Lin, Long ;
Jing, Qingshen ;
Zhang, Yan ;
Hu, Youfan ;
Wang, Sihong ;
Bando, Yoshio ;
Han, Ray P. S. ;
Wang, Zhong Lin .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1164-1169